Skip to main content

Advertisement

Log in

Effects of the silicon-containing chemical species dissolved from chitosan–siloxane hybrids on nerve cells

  • Invited Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silicic acid components from bioactive glass activate osteoblasts gene for bone generation. Many studies have been reported on osteoblast compatibility and bone regeneration using composites and hybrids, including silica or siloxane units. We previously synthesized chitosan−siloxane hybrids via a sol-gel method and observed bone and nerve regeneration. However, it is not clear the structure of molecules involving silicon atoms that has a more effective role in the cell activity and their mechanisms of cell activation. In this study, we prepared hybrid materials from chitosan and different types of alkoxysilane, 3-glycidoxypropyltrimethoxysilane (GPTMS), 3-glycidoxypropyldimethoxymethylsilane (GPDMS), and tetraethoxysilane (TEOS), and investigated the structures of the silicon-containing species dissolved from each hybrid and their effect on the proliferation of nerve cells. The silicon-containing species in the extraction were mainly 100–600 molecular weight, indicating they were chitin/chitosan units and monomeric hydrolyzed GPTMS, GPDMS, and TEOS. The nerve cell proliferation was inhibited by the chitosan–GPTMS and GPDMS hybrid extractions. The silicon-containing species were not taken up by the cells. The silicon-containing species dissolved from the hybrids were adsorbed to the cells or they inactivated biomolecules in the culture medium, suppressing cell proliferation.

Graphical abstract

Highlights

  • The silicon-containing species dissolved from chitosan–siloxane hybrid were corresponding to hydrolyzed GPTMS, GPDMS, and TEOS with chitosan oligomers.

  • Nerve cells did not uptake the silicon-containing species.

  • The silicon-containing species derived from Chitosan–GPTMS and –GPDMS hybrids inhibited nerve cell proliferation.

  • The silicon-containing species derive the hybrids adsorbed to the cell surface or inactivated biomolecules in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lansdown AB, Williams A (2007) A prospective analysis of the role of silicon in wound care. J Wound Care 16(9):404–407. https://doi.org/10.12968/jowc.2007.16.9.27865

    Article  CAS  Google Scholar 

  2. Carlisle EM (1988) Silicon as a trace nutrient. Sci Total Environ 73(1–2):95–106. https://doi.org/10.1016/0048-9697(88)90190-8

    Article  CAS  Google Scholar 

  3. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276(2):461–465. https://doi.org/10.1006/bbrc.2000.3503

    Article  CAS  Google Scholar 

  4. Gough JE, Jones JR, Hench LL (2004) Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25(11):2039–2046. https://doi.org/10.1016/j.biomaterials.2003.07.001

    Article  CAS  Google Scholar 

  5. Shie MY, Ding SJ, Chang HC (2011) The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater 7(6):2604–2614. https://doi.org/10.1016/j.actbio.2011.02.023

    Article  CAS  Google Scholar 

  6. Zhou X, Moussa FM, Mankoci S, Ustriyana P, Zhang N, Abdelmagid S, Molenda J, Murphy WL, Safadi FF, Sahai N (2016) Orthosilicic acid, Si(OH)4, stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation. Acta Biomater 39:192–202. https://doi.org/10.1016/j.actbio.2016.05.007

    Article  CAS  Google Scholar 

  7. Kim KJ, Joe YA, Kim MK, Lee SJ, Ryu YH, Cho DW, Rhie JW (2015) Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK 1/2 activation. Int J Nanomed 10:2261–2272. https://doi.org/10.2147/IJN.S71925

    Article  CAS  Google Scholar 

  8. Quignard S, Coradin T, Powell JJ, Jugdaohsingh R (2017) Silica nanoparticles as sources of silicic acid favoring wound healing in vitro. Colloids Surf B 155:530–537. https://doi.org/10.1016/j.colsurfb.2017.04.049

    Article  CAS  Google Scholar 

  9. Fritsch-Decker S, An Z, Yan J, Hansjosten I, Al-Rawi M, Peravali R, Diabaté S, Weiss C (2019) Silica nanoparticles provoke cell death independent of p53 and BAX in human colon cancer cells. Nanomaterials 9(8):1172. https://doi.org/10.3390/nano9081172

    Article  CAS  Google Scholar 

  10. Bonazza V, Borsani E, Buffoli B, Parolini S, Inchingolo F, Rezzani R, Rodella LF (2018) In vitro treatment with concentrated growth factors (CGF) and sodium orthosilicate positively affects cell renewal in three different human cell lines. Cell Biol Int 42(3):353–364. https://doi.org/10.1002/cbin.1090

    Article  CAS  Google Scholar 

  11. Shirosaki Y, Tsuru K, Moribayashi H, Hayakawa S, Nakamura Y, Gibson IR, Osaka A (2010) Preparation of osteocompatible Si(IV)-enriched chitosan-silicate hybrids. J Ceram Soc Jpn 119(11):989–992. https://doi.org/10.2109/jcersj2.118.989

    Article  Google Scholar 

  12. Teruo O, Masayuki Y (2007) In: Recent progress in Regenerative Medicine Technologies, Chapter 4 Soft Tissues. Tokyo, Japan

  13. Gupta B, Papke JB, Mohammadkhah A, Day DE, Harkins AB (2016) Effects of chemically doped bioactive borate glass on neuron regrowth and regeneration. Ann Biomed Eng 44(12):3468–3477. https://doi.org/10.1007/s10439-016-1689-0

    Article  Google Scholar 

  14. Mobasseri SA, Terenghi G, Downes S (2013) Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair. J Mater Sci: Mater Med 24(7):1639–1647. https://doi.org/10.1007/s10856-013-4922-5

    Article  CAS  Google Scholar 

  15. Jiang X, Lim SH, Mao Hai-Quan HQ, Chew SY (2010) Current applications and future perspectives of artificial nerve conduits. Exp Neurol 223(1):86–101. https://doi.org/10.1016/j.expneurol.2009.09.009

    Article  Google Scholar 

  16. Boecker A, Daeschler SC, Kneser U, Harhaus L (2019) Relevance and recent developments of chitosan in peripheral nerve surgery. Front Cell Neurosci 13:104. https://doi.org/10.3389/fncel.2019.00104

    Article  CAS  Google Scholar 

  17. Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K (2020) Chitosan tubes prefilled with aligned fibrin nanofiber hydrogel enhance facial nerve regeneration in rabbits. ACS Omega 6:26293–26301. https://doi.org/10.4103/1673-5374.271668

    Article  CAS  Google Scholar 

  18. Mu X, Sun X, Yang S, Pan S, Sun J, Niu Y, He L, Wang X (2021) Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 128(8):1897–1910. https://doi.org/10.1021/acsomega.1c03245

    Article  CAS  Google Scholar 

  19. Amado S, Simões MJ, Armada da Silva PAS, Luís AL, Shirosaki Y, Lopes MA, Santos JD, Fregnan F, Gambarotta G, Raimondo S, Fornaro M, Veloso AP, Varejão ASP, Maurício AC, Geuna S (2008) Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials 29(33):4409–4419. https://doi.org/10.1016/j.biomaterials.2008.07.043

    Article  CAS  Google Scholar 

  20. Simões MJ, Amado S, Gärtner A, Armada da Silva PAS, Raimondo S, Vieira M, Luís AL, Shirosaki Y, Veloso AP, Santos JD, Varejão ASP, Geuna S, Maurício AC (2010) Use of chitosan scaffolds for repairing rat sciatic nerve defects. Ital J Anat Embryol 115(3):190–210. https://doi.org/10.13128/IJAE-9074

    Article  Google Scholar 

  21. Simões MJ, Gärtner A, Shirosaki Y, Gil da Costa RM, Cortez PP, Gärtner F, Santos JD, Lopes MA, Veloso AP, Varejão ASP, Maurício AC (2011) In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction. Acta Med Port 24(1):43–51. https://doi.org/10.20344/AMP.344

    Article  Google Scholar 

  22. Shirosaki Y, Hayakawa S, Osaka A, Lopes MA, Santos JD, Geuna S, Maurício AC (2014) Challenging for nerve repair using chitosan-siloxane hybrid porous scaffolds. BioMed Res Int 153808. https://doi.org/10.1155/2014/153808

  23. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482. https://doi.org/10.1006/abbi.1993.1311

    Article  CAS  Google Scholar 

  24. Shirosaki Y, Hirai M, Hayakawa S, Fujii E, Lopes MA, Santos JD, Osaka A (2015) Preparation and in vitro cytocompatibility of chitosan-siloxane hybrid hydrogels. J Biomed Mater Res 103(1):289–299. https://doi.org/10.1002/jbm.a.35171

    Article  CAS  Google Scholar 

  25. Zhang M, Hisamori H, Yamada T, Hirano S (1994) 13C CP/MAS NMR spectral analysis of 6-O-tosyl, 6-deoxy-6-iodo, and 6-deoxy derivatives of N-acetylchitosan in a solid state. Biosci Biotech Biochem 58(10):1906–1908. https://doi.org/10.1271/bbb.58.1906

    Article  CAS  Google Scholar 

  26. Davis RS, Brough AR, Atkinson A (2003) Formation of silica/epoxy hybrid network polymers. J Non-Cryst Solid 315:197–205. https://doi.org/10.1016/S0022-3093(02)01431-X

    Article  CAS  Google Scholar 

  27. Kumamoto K, Maeda T, Hayakawa S, Mustapha NAB, Wang MJ, Shirosaki Y (2021) Antibacterial chitosan nanofiber thin films with bacitracin zinc salt. Polymers 13(7):1–15. https://doi.org/10.3390/polym13071104

    Article  CAS  Google Scholar 

  28. Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, Costa MA, Fernandes MH (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5(1):346–355. https://doi.org/10.1016/j.actbio.2008.07.022

    Article  CAS  Google Scholar 

  29. Zhou J, Xu T, Wang X, Liu C, Liao X, Huang X, Shi B (2017) A low-cost and water resistant biomass adhesive derived from the hydrolysate of leather waste. RSC Adv 7(7):4024–4029. https://doi.org/10.1039/c6ra27132d

    Article  CAS  Google Scholar 

  30. Chen S, Hayakawa S, Shirosaki Y, Fujii E, Kawabata K, Tsuru K, Osaka A (2009) Sol-gel synthesis and microstructure analysis of amino-modified hybrid silica nanoparticles from aminopropyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc 92(9):2074–2082. https://doi.org/10.1111/j.1551-2916.2009.03135.x

    Article  CAS  Google Scholar 

  31. Liu XM, Maziarz EP, Heiler DJ, Grobe GL (2003) Comparative studies of poly(dimethyl siloxanes) using automated GPC-MALDI-TOF MS and on-line GPC-ESI-TOF MS. J Am Soc Mass Spectrom 14(3):195–202. https://doi.org/10.1016/S1044-0305(02)00908-X

    Article  CAS  Google Scholar 

  32. Wang Y, Zhao Y, Sun C, Hu W, Zhao J, Li G, Zhang L, Liu M, Liu Y, Ding F, Yang Y, Gu X (2016) Chitosan degradation products promote nerve regeneration by stimulating Schwann Cell proliferation via miR-27a/FOXO1 axis. Mol Neurobiol 53(1):28–39. https://doi.org/10.1007/s12035-014-8968-2

    Article  CAS  Google Scholar 

  33. Obata A, Iwanaga N, Terada A, Jell G, Kasuga T (2017) Osteoblast-like cell responses to silicate ions released from 45S5-type bioactive glass and siloxane-doped vaterite. J Mater Sci 52(15):8942–8956. https://doi.org/10.1007/s10853-017-1057-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Masumi Kunisue, Center for Instrumental Analysis, Equipment Sharing Sector, Organization for Promotion of Open Innovation, Kyushu Institute of Technology, for TOF-MS measurement. We thank Ashleigh Cooper, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This research was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant Number JP19H04471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Shirosaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Kosei Hattori, Satoshi Hayakawa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattori, K., Hayakawa, S. & Shirosaki, Y. Effects of the silicon-containing chemical species dissolved from chitosan–siloxane hybrids on nerve cells. J Sol-Gel Sci Technol 104, 606–616 (2022). https://doi.org/10.1007/s10971-022-05814-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05814-z

Keywords

Navigation