Skip to main content
  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:

Preparation of a dense alumina fiber with nanograins by a novel two-step calcination

Abstract

Controlling the density and the nanograin size is challenging but essential to prepare continuous alumina fibers with excellent performance. In this study, the continuous alumina fibers were prepared using the sol-gel method. The fibers calcined under different conditions were characterized to reveal the effect of calcining conditions on the fiber microstructure evolution. The results show that the phase transformation from amorphous Al2O3 to γ-Al2O3 and then to α-Al2O3 takes place during the calcining process. The fiber, prepared using a single-step calcining method, cannot obtain a fully dense and nanocrystal microstructure through optimizing the calcination conditions. Thus, a novel two-step calcining process was proposed, through which an almost fully dense α-Al2O3 fiber with an average grain size of ~150 nm was prepared and the tensile strength of fibers reaches 2.2 GPa. Based on the results, the effect mechanism of residual organics, phase transformation, densifying, and grain growth on the fiber microstructure evolution was discussed in depth.

Graphical abstract

Highlights

  • The full dense alumina fiber with nanograins were prepared using a novel two-step calcination.

  • The tensile strength of alumina fibers reaches up to 2.2 GPa.

  • The influencing mechanism of organics removal, phase transformation, grain growth, and densification on the microstructure regulation of alumina fibers was revealed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Hay RS, Armani CJ, Ruggles-Wrenn MB, Fair GE (2014) Creep mechanisms and microstructure evolution of NextelTM 610 fiber in air and steam. J Eur Ceram Soc 34(10):2413–2426. https://doi.org/10.1016/j.jeurceramsoc.2014.01.032

    CAS  Article  Google Scholar 

  2. Armani CJ, Ruggles-Wrenn MB, Hay RS, Fair GE (2013) Creep and microstructure of NextelTM 720 fiber at elevated temperature in air and in steam. Acta Mater 61(16):6114–6124. https://doi.org/10.1016/j.actamat.2013.06.053

    CAS  Article  Google Scholar 

  3. Almeida RSM, Bergmueller EL, Eggert BGF, Tushtev K, Schumacher T, Luehrs H, Clauss B, Grathwohl G, Rezwan K (2016) Thermal exposure effects on the strength and microstructure of a novel mullite fiber. J Am Ceram Soc 99(5):1709–1716. https://doi.org/10.1111/jace.14093

    CAS  Article  Google Scholar 

  4. Armani CJ, Ruggles-Wrenn MB, Hay RS, Fair GE, Keller KA (2014) Creep of polycrystalline yttrium aluminum garnet (YAG) at elevated temperature in air and in steam. Mater Sci Eng, A 589:125–131. https://doi.org/10.1016/j.msea.2013.09.083

    CAS  Article  Google Scholar 

  5. Hay RS, Fair GE, Tidball T (2015) Fiber strength after grain growth in NextelTM 610 alumina fiber. J Am Ceram Soc 98(6):1907–1914. https://doi.org/10.1111/jace.13523

    CAS  Article  Google Scholar 

  6. Hay RS, Fair GE, Keller KA, Tidball T (2015) Determination of 3-D alumina grain orientation, size, shape, and growth kinetics from 2-D data in NextelTM 610 fibers. J Am Ceram Soc 98(7):2295–2306. https://doi.org/10.1111/jace.13572

    CAS  Article  Google Scholar 

  7. Wilson DM, Visser LR (2001) High performance oxide fibers for metal and ceramic composites. Compos Part A 32(8):1143–1153. https://doi.org/10.1016/s1359-835x(00)00176-7

    Article  Google Scholar 

  8. Bunsell AR, Berger MH (2000) Fine diameter ceramic fibres. J Eur Ceram Soc 20(13):2249–2260. https://doi.org/10.1016/s0955-2219(00)00090-x

    CAS  Article  Google Scholar 

  9. Liu L, Wang J, Ma Y, Liu W, Yao S (2020) Preparation of continuous alumina fiber with nano grains by the addition of iron sol. Materials 13(23). https://doi.org/10.3390/ma13235442

  10. Venkatesh R, Ramanan SR (2000) Effect of organic additives on the properties of sol-gel spun alumina fibres. J Eur Ceram Soc 20(14-15):2543–2549

    CAS  Article  Google Scholar 

  11. Pfeifer S, Bischoff M, Niewa R, Clauss B, Buchmeiser MR (2014) Structure formation in yttrium aluminum garnet (YAG) fibers. J Eur Ceram Soc 34(5):1321–1328. https://doi.org/10.1016/j.jeurceramsoc.2013.10.036

    CAS  Article  Google Scholar 

  12. Ma X, Lv Z, Tan H, Wang C, Li L, Wang Y (2019) Preparation of YAG nano-fibers using polyvinyl butyral from nitrate solution. J Phys Chem Solids 130:276–281. https://doi.org/10.1016/j.jpcs.2019.02.029

    CAS  Article  Google Scholar 

  13. Xie Y, Wang L, Ma D, Peng Y, Zhu L, Wang X, Zhang G, Wang T, Jia Z, Zhang J (2019) Preparation, mechanical properties, and diffuse reflectance of YAG continuous fibers and nanofibers. Ceram Int 45(17):21213–21219. https://doi.org/10.1016/j.ceramint.2019.07.102

    CAS  Article  Google Scholar 

  14. Jiang J, Ni N, Hao W, Zhao X, Guo F, Fan X, Xiao P (2019) Effects of sintering atmosphere on the densification and microstructure of yttrium aluminum garnet fibers prepared by sol-gel process. J Eur Ceram Soc 39(16):5332–5337. https://doi.org/10.1016/j.jeurceramsoc.2019.08.033

    CAS  Article  Google Scholar 

  15. Gao Y, Cheng M, Liu Q, Li C, Liu J, Yao S, Wang J, Ma Y, Liu W (2019) Thermal decomposition of aluminum carboxylates based precursor for alumina fibers. Mater Res Express 6(11). https://doi.org/10.1088/2053-1591/ab4ab1

  16. Song X, Gao Y, Liu Q, Wang J, Yao S, Liu W, Ma Y, Cai Q (2019) Thermally stable boron-containing mullite fibers derived from a monophasic mullite sol. Ceram Int 45(1):1171–1178. https://doi.org/10.1016/j.ceramint.2018.09.301

    CAS  Article  Google Scholar 

  17. Liang C, Liu W, Liu Q, Gao Y, Liu J, Wang J, Yao S, Ma Y (2021) The formation of core-sheath structure and its effects on thermal decomposition and crystallization of alumina fibers. Ceram Int 47(4):5145–5155. https://doi.org/10.1016/j.ceramint.2020.10.092

    CAS  Article  Google Scholar 

  18. Pfeifer S, Demirci P, Duran R, Stolpmann H, Renfftlen A, Nemrava S, Niewa R, Clauss B, Buchmeiser MR (2016) Synthesis of zirconia toughened alumina (ZTA) fibers for high performance materials. J Eur Ceram Soc Soc 36(3):725–731. https://doi.org/10.1016/j.jeurceramsoc.2015.10.028

    CAS  Article  Google Scholar 

  19. Lucuta PG, Halliday JD, Christian B (1992) Phase evolution in Al2O3 fibre prepared from an oxychloride precursor. J Mater Sci 27(22):6053–6061. https://doi.org/10.1007/BF01133749

    CAS  Article  Google Scholar 

  20. Zhao Z, Shen X, Yao H, Wang J, Chen J, Li Z (2014) Alumina nanofibers obtained via electrospinning of pseudo-boehmite sol/PVP solution. J Sol-Gel Sci Technol 70(1):72–80. https://doi.org/10.1007/s10971-014-3276-x

    CAS  Article  Google Scholar 

  21. Hafid Roque-Ruiz J, Medellin-Castillo NA, Yobanny Reyes-Lopez S (2019) Fabrication of α-alumina fibers by sol-gel and electrospinning of aluminum nitrate precursor solutions. Results Phys 12:193–204. https://doi.org/10.1016/j.rinp.2018.11.068

    Article  Google Scholar 

  22. Nordahl CS, Messing GL (2002) Sintering of α-Al2O3-seeded nanocrystalline γ-Al2O3 powders. J Eur Ceram Soc 22(4):415–422. https://doi.org/10.1016/s0955-2219(01)00285-0

    CAS  Article  Google Scholar 

  23. Schmuecker M, Flucht F, Mechnich P (2012) Degradation of oxide fibers by thermal overload and environmental effects. Mater Sci Eng A 557:10–16. https://doi.org/10.1016/j.msea.2012.05.107

    CAS  Article  Google Scholar 

  24. Li X, Xu H, Wang Q, Li S, Xiao H, Zhang L, Tang M, Chen L (2019) Control of continuous α-Al2O3 fibers by self-seeding and SiO2-Sol doping. Ceram Int 45(9):12053–12059. https://doi.org/10.1016/j.ceramint.2019.03.101

    CAS  Article  Google Scholar 

  25. Li X, Su X, Xiao H, Chen L, Li S, Tang M (2020) Continuous α-Al2O3 fibers grown by seeding with in-situ suspension. Ceram Int 46(10):15638–15645. https://doi.org/10.1016/j.ceramint.2020.03.112

    CAS  Article  Google Scholar 

  26. Almeida RSM, Tushtev K, Clauss B, Grathwohl G, Rezwan K (2015) Tensile and creep performance of a novel mullite fiber at high temperatures. Compos Part A 76:37–43. https://doi.org/10.1016/j.compositesa.2015.05.013

    CAS  Article  Google Scholar 

  27. Poulon-Quintin A, Berger MH, Bunsell AR (2004) Mechanical and microstructural characterisation of Nextel 650 alumina-zirconia fibres. J Eur Ceram Soc 24(9):2769–2783. https://doi.org/10.1016/j.jeurceramsoc.2003.08.011

    CAS  Article  Google Scholar 

  28. Chen IW, Wang XH (2000) Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404(6774):168

    CAS  Article  Google Scholar 

  29. Li JG, Ye YP (2006) Densification and grain growth of Al2O3 nanoceramics during pressureless sintering. J Am Ceram Soc 89(1):139–143. https://doi.org/10.1111/j.1551-2916.2005.00654.x

    CAS  Article  Google Scholar 

  30. Li C, Liu W, Luo T, Cheng M, Liu Q, Wang J, Yao S, Ma Y (2021) Effect of formic-acid-to-acetic-acid ratio on the structure and spinnability of aqueous aluminium sol of alumina fibre. Ceram Int 47(18):26034–26041. https://doi.org/10.1016/j.ceramint.2021.06.009

    CAS  Article  Google Scholar 

  31. Cheng M, Liu W, Yao S, Wang J, Ma Y (2021) Comparing the phase transformation of continuous alumina fiber and xerogels derived from the same precursor. J Sol-Gel Sci Technol 99(1):169–177. https://doi.org/10.1007/s10971-021-05572-4

    CAS  Article  Google Scholar 

  32. Liu J, Ma Y, Liu W, Song X, Yao S, Wang J, Cheng M, Li C (2019). Preparation of alumina precursor sols with a high solid content for alumina fibers. Mater Res Express 6(4). https://doi.org/10.1088/2053-1591/aafcbf

  33. Wu L-Y, Tong S-R, Hou S-Q, Ge M-F (2012) Influence of temperature on the heterogeneous reaction of formic acid on α-Al2O3. J Phys Chem A 116(42):10390–10396. https://doi.org/10.1021/jp3073393

    CAS  Article  Google Scholar 

  34. Xue M, Gao B, Li R, Sun J (2018) Aluminum formate (AF): synthesis, characterization and application in dye wastewater treatment. J Environ Sci 74:95–106. https://doi.org/10.1016/j.jes.2018.02.013

    CAS  Article  Google Scholar 

  35. Gao Y, Liu W, Song X, Liu Q, Yao S, Wang J, Cai Q, Ma Y (2019) Preparation, characterization and mechanical properties of continuous mullite fibers derived from the diphasic sol-gel route. J Sol-Gel Sci Technol 92(1):75–83. https://doi.org/10.1007/s10971-019-05078-0

    CAS  Article  Google Scholar 

  36. Venkatesh R, Ramanan SR (2002) Influence of processing variables on the microstructure of sol-gel spun alumina fibres. Mater Lett 55(3):189–195. https://doi.org/10.1016/s0167-577x(01)00644-9

    CAS  Article  Google Scholar 

  37. Gutiérrez G, Johansson B (2002) Molecular dynamics study of structural properties of amorphous Al2O3. Phys Rev B 65(10):104202. https://doi.org/10.1103/PhysRevB.65.104202

    CAS  Article  Google Scholar 

  38. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81(8):1995–2012. https://doi.org/10.1111/j.1151-2916.1998.tb02581.x

    CAS  Article  Google Scholar 

  39. Kwon S, Messing GL (2000) Sintering of mixtures of seeded boehmite and ultrafine α-alumina. J Am Ceram Soc 83(1):82–88. https://doi.org/10.1111/j.1151-2916.2000.tb01152.x

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant no. U20A20240) and the Natural Science Foundation of Hunan Province (Grant no. 2021JJ40769, 2020JJ5733).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuwei Yao or Juan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Peng, S., Liu, W. et al. Preparation of a dense alumina fiber with nanograins by a novel two-step calcination. J Sol-Gel Sci Technol 103, 125–138 (2022). https://doi.org/10.1007/s10971-022-05813-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05813-0

Keywords

  • Alumina fiber
  • Calcination
  • Grain size
  • Densification