Skip to main content
  • Invited Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:

Hydrothermal synthesis of perovskite-type solid electrolyte nanoplate

Abstract

Perovskite-type (A,La)TiO3 (A: Li or Na) nanoplates were synthesized by hydrothermal reaction using titanium bis(ammonium lactate) dihydroxide as a starting material at 260 °C for 48 h. When NaOH was used as a mineralizer, perovskite single phase was obtained, but when LiOH was used, impurities including lanthanum hydroxide were obtained, and no perovskite phase was obtained. Scanning transmission electron microscopy (STEM) analyses demonstrated that perovskite NPs have plate-like morphology with plane index of {100}. Energy dispersive X-ray spectroscopy (EDX) revealed that Na partly occupied in A-site of perovskite structure. The nanoplates were pressed into a pellet and sintered at 1000 °C. The pellet exhibited an ionic conductivity of 3.8 × 10−6 S/cm.

Graphical abstract

Highlights

  • Perovskite-type (A,La)TiO3 (A : Li or Na) nanoplates were synthesized by hydrothermal reaction.

  • The nanoplates had {100} plane of theperovskite with about 10 nm thick.

  • The nanoplates were found to be effective in lowering the sintering temperature.

  • The nanoplate-pellet sintered at 1000 °C exhibited an ionic conductivity of 3.8 × 10−6 S/cm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Cohen RE (1992) Origin of ferroelectricity in perovskite oxides. Nature 358:136–138

    Article  CAS  Google Scholar 

  2. Toda K, Kurita S, Sato M (1996) New layered perovskite compounds, LiLaTiO4 and LiEuTiO4. J Ceram Soc Jpn 104:140–142

    Article  CAS  Google Scholar 

  3. Pham QN, Bohnke C, Bohnke O (2004) Effect of surface treatments on Li0.30Ln0.57TiO3 (Ln = La, Nd) perovskite ceramics: an X-ray photoelectron spectroscopy study. Surf Sci 572:375–384

    Article  CAS  Google Scholar 

  4. Inoue T, Yamada K (2017) Economic evaluation toward zero CO2 emission power generation system after 2050 in Japan. Energy Procedia 142:2761–2766

    Article  Google Scholar 

  5. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714

    Article  CAS  Google Scholar 

  6. Hamao N, Yamaguchi Y, Mimura K, Hamamoto K (2021) Densification of garnet-type electrolyte thin sheets by cold sintering. Chem Lett 50:1784–1786

    Article  CAS  Google Scholar 

  7. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Comm 86:689–693

    Article  CAS  Google Scholar 

  8. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990

    Article  CAS  Google Scholar 

  9. Chen CH, Amine K (2001) Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ion 144:51–57

    Article  CAS  Google Scholar 

  10. Zhang Y, Chen F, Tu R, Shen Q, Zhang L (2004) Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 sold electrolytes. J Power Sources 268:960–964

    Article  Google Scholar 

  11. Romero M, Faccio R, Vázquez S, Davyt S, Mombrú ÁW (2016) Experimental and theoretical Raman study on the structure and microstructure of Li0.30La0.57TiO3 electrolyte prepared by the sol-gel method in acetic medium. Ceram Int 42:15414–15422

    Article  CAS  Google Scholar 

  12. Dang F, Mimura K, Kato K, Imai H, Wada S, Haneda H, Kuwabara M (2012) In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale 4:1344–1349

    Article  CAS  Google Scholar 

  13. Mimura K, Ma Q, Kato K (2016) Synthesis and characterization of barium titanate-based solid solution nanocubes. J Ceram Soc Jpn 124:639–643

    Article  CAS  Google Scholar 

  14. Mimura K, Liu Z, Itasaka H, Kato K (2020) Hydrothermal synthesis of A-site substituted BaTiO3 nanocubes. J Ceram Soc Jpn 128:475–480

    Article  CAS  Google Scholar 

  15. Mimura K, Liu Z, Itasaka H, Lin Y-C, Suenaga K, Kato K (2021) One-step synthesis of BaTiO3/CaTiO3 core-shell nanocubes by hydrothermal reaction. J Asian Ceram Soc 9:359–365

    Article  Google Scholar 

  16. Mimura K, Kato K (2013) Characteristics of barium titanate nanocube ordered assembly thin films fabricated by dip-coating method, Jpn. J Appl Phys 52:06KC06

    Article  Google Scholar 

  17. Mimura K, Kato K (2014) Enhanced dielectric properties of BaTiO3 nanocube assembled film in metal-insulator-metal capacitor structure. Appl Phys Express 7:061501

    Article  CAS  Google Scholar 

  18. Mimura K, Kato K (2018) Dielectric properties of barium zirconate titanate nanocube 3D-ordered assemblies. J Ceram Soc Jpn 156:321–325

    Article  Google Scholar 

  19. Bohnke O (2008) The fast lithium-ion conducting oxides Li3xLa2/3-xTiO3 from fundamentals to application. Solid State Ion 179:9–15

    Article  CAS  Google Scholar 

  20. Kravchyk KV, Brotons G, Belous AG, Bohnke O (2014) Li3xLa2/3-xTiO3 nanoparticles with different morphologies and self-organization, obtained from simple solution precipitation methods. Mater Lett 137:182–187

    Article  CAS  Google Scholar 

  21. Lin X, Wang H, Du H, Xiong X, Qu B, Guo Z, Chu D (2016) Growth of lithium lanthanum titanate nanosheets and their application in lithium-ion batteries. ACS Appl Mater Interfaces 8:1486–1492

    Article  CAS  Google Scholar 

  22. Shannon RD (1976) Acta Crystallogr Sect A 32:751

    Article  Google Scholar 

  23. Reaney IM, Colla EL, Setter N (1994) Dielectric and structural characteristics of Ba- and Sr-based complex perovskite as a function of tolerance factor, Jpn. J Appl Phys 33:3984–3990

    Article  CAS  Google Scholar 

  24. Ito M, Inaguma Y, Jung WH, Chen L, Nakamura T (1994) High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, Sm). Solid State Ion 70/71:203–207

    Article  Google Scholar 

  25. BD Cullity, Elements of X-ray diffraction, 2nd ed., Addison-Wesley, Reading, (1978) 284.

  26. Kawai H, Kuwano J (1994) Lithium ion conductivity of a-site deficient perovskite solid solution La0.67-xLi3xTiO3. J Electrochem Soc 141:L78

    Article  CAS  Google Scholar 

  27. Itasaka H, Mimura K, Kato K (2018) Extra surfactant-assisted self-assembly of highly ordered monolayers of BaTiO3 Nanocubes at the air–water interface. Nanomaterials 8:739

    Article  Google Scholar 

  28. Osada M, Sasaki T (2012) Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv Mater 24:210–228

    Article  CAS  Google Scholar 

  29. Maria J-P, Kang X, Floyd RD, Dickey EC, Guo H, Guo J, Baker A, Funihashi S, Randall CA (2017) Cold sintering: current status and prospects. J Mater Res 32:3205–3218

    Article  CAS  Google Scholar 

  30. Guo J, Zhao X, Beauvoir THD, Seo J-H, Berbano SS, Baker AL, Azina C, Randall CA (2018) Recent progress in applications of the cold sintering process for ceramic–polymer composites. Adv Funct Mater 28:1801724

    Article  Google Scholar 

  31. Hamao N, Yamaguchi Y, Hamamoto K (2021) Densification of a NASICON-Type LATP electrolyte sheet by a cold-sintering process. Materials 14:4737

    Article  CAS  Google Scholar 

  32. O. I. V’yunov TO, Plutenko OP, Fedorchuk AG, Belous YeV (2021) Lobko, Synthesis and dielectric properties in the lithium-ion conducting material La0.5Li0.5-xNaxTiO3. J Alloy Compd 889:161556

    Article  Google Scholar 

  33. Symington AR, Purton J, Statham J, Molinari M, Saiful Islam M, Parker SC (2020) Quantifying the impact of disorder on Li-ion and Na-ion transport in perovskite titanate solid electrolytes for solid-state batteries. J Mater Chem A 8:19603–19611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A part of this work was supported by The Naito Science & Engineering Foundation and a project, JPNP20005, commissioned by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KM, NH, ZL, HI and KH. The first draft of the manuscript was written by KM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Mimura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mimura, Ki., Hamao, N., Itasaka, H. et al. Hydrothermal synthesis of perovskite-type solid electrolyte nanoplate. J Sol-Gel Sci Technol 104, 599–605 (2022). https://doi.org/10.1007/s10971-022-05810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05810-3

Keywords