Skip to main content
Log in

Ammonia-free synthesis and color tuning of oxynitride perovskite SrTaO2N-SrTiO3 solid solution by using alkoxide-derived Ta-Ti binary oxide gel precursors

  • Invited Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript


Solid solutions of strontium-tantalum oxynitride perovskite (SrTaO2N) and strontium-titanium oxide perovskite (SrTiO3) were prepared as possible candidates for novel inorganic pigments. The use of Ta-Ti binary oxide gel, which was obtained by the sol–gel method, was conducive to the development of single-phase solid solutions with a homogeneous atomic distribution. In addition, the use of urea as a nitriding agent availed to eliminate harmful ammonia gas during the synthesis. The color of solid solution depends on the band gap and Ti reduction state, which changes with Ti content. As a result, various chromatic colors, i.e., orange to yellow-green, were obtained from solid solutions. The solid solutions retained their color even after thermal and chemical resistance examinations. Because toxic substances were eliminated from the products and preparation process, the solid solutions show potentials to be applied as environmentally-friendly pigments.

Graphical Abstract


  • Solid solutions of SrTaO2N and SrTiO3 were prepared by using alkoxide-derived metal oxide gels as precursors.

  • The Ta-Ti binary oxide gel, wal, and thermal stabilities hich was prepared by co-condensation of Ta- and Ti-alkoxides, was suitable as a precursor compared with the mixture of Ta2O5 gel and TiO2 gel.

  • Urea can be used as a solid nitriding agent to achieve ammonia-free synthesis of metal oxynitrides.

  • Various chromatic colors were obtained from solid solutions by changing the Ti/Ta composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Hugo A, Ciumei C, Buxton A, Pistikopoulos EN, Pistikopoulos (2004) Environmental impact minimization through material substitution: a multi-objective optimization approach. Green Chem 6:407–417.

    Article  CAS  Google Scholar 

  2. Buxbaum G, Pfaff G (2005) Industrial Inorganic Pigments. 3rd ed. Wiley-VCH, Weinheim

  3. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72.

    Article  CAS  Google Scholar 

  4. Turner A (2019) Cadmium pigments in consumer products and their health risks. Sci Total Environ 657:1409–1418.

    Article  CAS  Google Scholar 

  5. Luo H, Li Y, Zhao Y, Xiang Y, He D, Pan X (2020) Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environ Pollut 257:113475.

    Article  CAS  Google Scholar 

  6. E.U. Parliament, EU Council (2003) Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. J Eur Union 46:19–23

    Google Scholar 

  7. Vishnu VS, Jose S, Reddy ML (2011) Novel environmentally benign yellow inorganic pigments based on solid solutions of samarium–transition metal mixed oxides. J Am Ceram Soc 94:997–1001.

    Article  CAS  Google Scholar 

  8. Oka R, Kosaya T, Masui T (2018) Novel environmentally friendly inorganic orange pigments based on Ca14Al10Zn6O35. Chem Lett 47:1522–1525.

    Article  CAS  Google Scholar 

  9. Bae B, Takeuchi N, Tamura S, Imanaka N (2017) Environmentally friendly orange pigments based on hexagonal perovskite-type compounds and their high NIR reflectivity. Dyes Pigm 147:523–528.

    Article  CAS  Google Scholar 

  10. Laguna M, Núñez NO, Fernández M, Ocaña M (2018) Synthesis and optical properties of environmentally benign and highly uniform NaCe(MoO4)2 based yellow nanopigments. J Alloy Compd 739:542–548.

    Article  CAS  Google Scholar 

  11. Jansen M, Letschert HP (2000) Inorganic yellow-red pigments without toxic metals. Nature 404:980–982.

    Article  CAS  Google Scholar 

  12. Cheviré F, Tessier FMarchand R,(2006) Optical properties of the perovskite solid solution LaTiO2N–ATiO3 (A = Sr, Ba). Eur J Inorg Chem 1223–1230.

  13. Pastrana-Fábregas R, Isasi-Marín J, Sáez-Puche R (2006) Synthesis and characterization of inorganic pigments based on transition metal oxynitrides. J Mater Res 21:2255–2260.

    Article  Google Scholar 

  14. Aguiar R, Logvinovich D, Weidenkaff A, Rachel A, Reller A, Ebbinghaus SG (2008) The vast colour spectrum of ternary metal oxynitride pigments. Dyes Pigm 76:70–75.

    Article  CAS  Google Scholar 

  15. Maillard P, Tessier F, Orhan E, Cheviré F, Marchand R (2005) Thermal ammonolysis study of the rare-earth tantalates RTaO4. Chem Mater 17:152–156.

    Article  CAS  Google Scholar 

  16. Fuertes A (2012) Chemistry and applications of oxynitride perovskites. J Mater Chem 22:3293–3299.

    Article  CAS  Google Scholar 

  17. Tessier F, Maillard P, Cheviré F, Domen K, Kikkawa S (2009) Optical properties of oxynitride powders. J Ceram Soc Jpn 117:1–5.

    Article  CAS  Google Scholar 

  18. Setsuda Y, Maruyama Y, Izawa C, Watanabe T (2017) Low-temperature synthesis of BaTaO2N via the flux method using NaNH2. Chem Lett 46:987–989.

    Article  CAS  Google Scholar 

  19. Miura A (2017) Low-temperature synthesis and rational design of nitrides and oxynitrides for novel functional material development. J Ceram Soc Jpn 125:552–558.

    Article  CAS  Google Scholar 

  20. Hosono A, Masubuchi Y, Koyama K, Higuchi M, Kikkawa S (2020) Formation and morphological change of BaTaO2N perovskite from BaCN2/Ta2O5 mixture. J Alloy Compd 836:155459.

    Article  CAS  Google Scholar 

  21. Sun SK, Motohashi T, Masubuchi Y, Kikkawa S (2014) Direct synthesis of SrTaO2N from SrCO3/Ta3N5 Involving CO Evolution. J Eur Ceram Soc 34:4451–4455.

    Article  CAS  Google Scholar 

  22. Niu WB, Sun SK, Guo WM, Chen SL, Lv M, Lin HT, Wang CY (2018) Synthesis of perovskite BaTaO2N and SrNbO2N using TaN/NbN as the nitrogen source. Ceram Int 44:23324–23328.

  23. Ueda K, Inaguma Y, Asakura S, Yin S (2018) New method for the synthesis of β-TaON oxynitride using (C6N9H3)n. Chem Lett 47:840–842.

    Article  CAS  Google Scholar 

  24. Masubuchi Y, Tadaki M, Kikkawa S (2018) Synthesis of the perovskite SrTaO2N using C3N4 for both reduction and nitridation. Chem Lett 47:31–33.

    Article  CAS  Google Scholar 

  25. Yang Q, Masubuchi Y, Higuchi M (2020) Synthesis of perovskite-type oxynitrides SrNb(O,N)3 and CaTa(O,N)3 using carbon nitride. Ceram Int 46:13941–13944.

    Article  CAS  Google Scholar 

  26. Gomathi A, Reshma S, Rao CNR (2009) A simple urea-based route to ternary metal oxynitride nanoparticles. J Solid State Chem 182:72–76.

    Article  CAS  Google Scholar 

  27. Gao Q, Giordano C, Antonietti M (2011) Controlled synthesis of tantalum oxynitride and nitride nanoparticles. Small 7:3334–3340.

    Article  CAS  Google Scholar 

  28. Katagiri K, Hayashi Y, Yoshiyuki R, Inumaru K, Uchiyama T, Nagata N, Uchimoto Y, Miyoshi A, Maeda K (2018) Mechanistic insight on the formation of GaN:ZnO solid solution from Zn-Ga layered double hydroxide using urea as the nitriding agent. Inorg Chem 57:13953–13962.

    Article  CAS  Google Scholar 

  29. Okada R, Katagiri K, Masubuchi YInumaru K (2019) Preparation of LaTiO2N using hydrothermally synthesized La2Ti2O7 as a precursor and urea as a nitriding agent. Eur J Inorg Chem 1257–1264.

  30. Sakata T, Yoshiyuki R, Okada R, Urushidani S, Tarutani N, Katagiri K, Inumaru K, Koyama K, Masubuchi Y (2021) Environmentally benign synthesis and color tuning of strontium–tantalum perovskite oxynitride and its solid solutions. Inorg Chem 60:4852–4859.

    Article  CAS  Google Scholar 

  31. Li RP, Luo WJ, Li ZS, Yu T, Zou ZG (2010) Preparation and photocatalytic characterization of (SrTiO3)1−x(SrTaO2N)x solid solution. Chin J Inorg Chem 26:149–152

    CAS  Google Scholar 

  32. Kubelka P, Munk F (1931) Ein beitrag zur optik der farbanstriche. F Z Technol Phys 12:593–601

    Google Scholar 

  33. Johnston RM, (1973) In: Putton TC (ed.) Pigment Handbook, vol. 3. Wiley-Interscience Publication, New York, pp. 229−288

  34. Kikkawa S, Sun S, Masubuchi Y, Nagamine Y, Shibahara T (2016) Ferroelectric response induced in cis-type anion ordered SrTaO2N oxynitride perovskite. Chem Mater 28:1312–1317.

    Article  CAS  Google Scholar 

  35. Zhang YR, Masubuchi Y, Motohashi T, Kikkawa S, Hirota K (2013) Hot isostatic press sintering and dielectric properties of SrTaO2N ceramics. Ceram Int 39:3377–3380.

    Article  CAS  Google Scholar 

  36. Clarke SJ, Hardstone KA, Michie CW, Rosseinsky MJ (2002) High-temperature synthesis and structures of perovskite and n = 1 Ruddlesden−Popper tantalum oxynitrides. Chem Mater 14:2664–2669.

    Article  CAS  Google Scholar 

  37. Yuan C, Ye S, Xu B, Lei W (2012) Strain induced tetragonal SrTiO3 nanoparticles at room temperature. Appl Phys Lett 101:071909.

    Article  CAS  Google Scholar 

  38. Unoki H, Sakudo T (1967) Electron spin resonance of Fe3+ in SrTiO3 with special reference to the 110 °K phase transition. J Phys Soc Jpn 23:546–552.

    Article  CAS  Google Scholar 

  39. Fleury PA, Scott JG, Worlock JM (1968) Soft phonon modes and the 110 °K phase transition in SrTiO3. Phys Rev Lett 21:16–19.

    Article  CAS  Google Scholar 

  40. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278.

    Article  CAS  Google Scholar 

  41. Xie RJ, Hintzen HT (2013) Optical properties of (oxy)nitride materials: a review. J Am Ceram Soc 96:665–687.

    Article  CAS  Google Scholar 

  42. Wendusu, Shiraishi A, Takeuchi N, Masui T, Imanaka N (2015) Novel environment-friendly inorganic red pigments based on Bi4V2O11. RSC Adv 5:44886–44894.

    Article  CAS  Google Scholar 

Download references


This work was supported by JSPS KAKENHI (Grant numbers JP18K19132, JP18H01709, JP19H04699, and JP20H02439). We thank Edanz ( for editing a draft of this manuscript.


Japan Society for the Promotion of Science: KAKENHI, Grant Numbers: JP18K19132, JP18H01709, JP19H04699, and JP20H02439.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kiyofumi Katagiri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakata, T., Yoshiyuki, R., Urushidani, S. et al. Ammonia-free synthesis and color tuning of oxynitride perovskite SrTaO2N-SrTiO3 solid solution by using alkoxide-derived Ta-Ti binary oxide gel precursors. J Sol-Gel Sci Technol 104, 685–693 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: