Skip to main content
Log in

Structure and optical properties of nano-ZnMn2O4/CuS solid solution heterostructure

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nano-ZnMn2O4 sample was coupled with nano-CuS using co-precipitation and thermolysis methods. All X-ray patterns for different values of alloying parameter (x) in (1–x) ZnMn2O4/xCuS (x = 0, 0.1, 0.15, 0.2) system, disclosed only single tetragonal ZnMn2O4 (ZMO) phase. Rietveld refinement examined the distortion in tetrahedral and octahedral sites of ZMO upon coupled with CuS. The cation distribution between different sites was also investigated using Rietveld analysis method. The cell parameters were affected by the composition of the sample and dragging effect. The effect of solid solution between ZMO and CuS, on tetrahedral and octahedra bands of ZMO phase was studied. X-ray photoelectron spectroscopy spectra were measured to confirm the incorporation of Cu and S ions into the ZMO lattice and to determine the oxidation states of different ions. The optical band gap energies for (1–x)ZnMn2O4/xCuS samples are 2.49, 2.57, 2.61, and 2.55 eV; x = 0, 0.1, 0.15, and 0.2, respectively. The effect of the insertion of Cu and S ions in the ZMO lattice on the different optical parameters and emitted colors was explored using UV diffused reflectance and photoluminescence spectrophotometer techniques.

Graphical abstract

Highlights

  • Cu and S ions dissolved into the ZnMn2O4 (ZMO) lattice to form nano-(1–x)ZnMn2O4/xCuS solid solution.

  • XPS confirmed the existence of sulfur in ZMO matrix and the presence of Mn in two oxidation states (2, 3).

  • The optical band gap of the solid solution samples was increased irregularly as the number of Cu and S ions increased in ZMO matrix.

  • (1–x)ZnMn2O4/xCuS samples can be used in capacitance and shorter response time’s device.

  • The reduction in PL intensity in the solid solution sample with x = 0.2 nominated their applications as photo-catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang P, Li X, Zhao Q, Liu S (2011) Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods. Nanoscale Res Lett 6:323

  2. Fierro G, Jacono ML, Dragone R, Ferraris G, Andreozzi GB, Graziani G (2005) Fe–Zn manganite spinels and their carbonate precursors: preparation, characterization and catalytic activity. Appl Catal B Environ 57:153–165

    Article  CAS  Google Scholar 

  3. Heiba ZK, Mohamed MB (2018) Changes in structural, optical and magnetic properties of nano-CuS upon doping with Mn and Fe: a comparative study. Appl Phys A 124(6):1

    Article  Google Scholar 

  4. Heiba ZK, Mohamed MB, Farag NM, El-naggar AM, Altowairqi Y (2021) J Mater Sci: Mater Electron 32(22):27121

  5. Heiba ZK, Mohamed MB, Ghannam MM, Farag NM, El-naggar AM, Altowairqi Y (2021) J Inorg Organomet Polym. https://doi.org/10.1007/s10904-021-02083-1

  6. Heiba ZK, Mohamed MB, Ghannam MM, El-naggar AM, Altowairqi Y (2021) J Mater Sci: Mater Electron 32(14):19529

  7. Basaleh AS, Mohamed RM (2020) Influence of doped silver nanoparticles on the photocatalytic performance of ZnMn2O4 in the production of methanol from CO2 photocatalytic reduction. Appl Nanosci 10:3865–3874

  8. Heiba ZK, Mohamed MB, Ahmed SI (2021) Modifying the structure and optical characteristics of ZnMn2O4 by alloying with CdS to form heterostructure nanocomposite. Appl Phys A 127(11):1

  9. Wei XQ, Guo N, Wang GX, Ma XR (2019) Synthesis and improvement of photocatalytic performance of ZnMn2O4/ZnMgO composite layered microspheres. Appl Phys A 125:673

  10. Gholamrezapor E, Eslami A (2021) J Iran Chem Soc. https://doi.org/10.1007/s13738-021-02364-z

  11. Baoum A, Amin MS (2021) Appl Nanosci 11:1459

  12. Heiba ZK, Mohamed MB, Abdellatief M, Albassam AA (2020) Influence of alloying ratio in tailoring the structural and optical properties of (1 − x)CdS–xCuS nanocomposite. Appl Phys A 126(7):1

    Article  Google Scholar 

  13. Ma J, Du Q, Ge H, Zhang Q (2019) J Mater Sci 54:2928

  14. Meng N, Zhou Y, Nie W, Song L, Chen P (2015) J Nanopart Res 17:300

  15. Heiba ZK, Mohamed MB, Farag NM, Ahmed SI (2021) Correlation between structural and optical characteristics upon changing the composition ratio of CuS@MnS nanocomposites. Appl Phys A 127(4):1

    Article  Google Scholar 

  16. Arjunan S, Kavitha HP, Ponnusamy S, Mani N, Hayakawa Y (2016) J Mater Sci: Mater Electron 27:9022

  17. Yumashev KV, Mikhailov VP, Malyarevich AM, Prokoshin PV, Gurin VS, Artemyev MV (1995) MRS Online Proceedings Library 405:289

  18. Balasubramanian K, Paul S, Krishma JP (2021) Enhanced linear and nonlinear optical response in CuS/Ag2S nanocomposites. Appl Phys A 127:744

  19. Hao Y, Yang L, Li J, Xing R, Gu Y (2021) Eur Phys J Appl Phys 94:20401

  20. Tauc J (1972) In Abeles A (ed.) The optical properties of solid. North Holland, Amsterdam, p. 277

  21. El-naggar AM, Heiba ZK, Mohamed MB, Kamal AM, Osman MM, Albassam AA, Lakshminarayana G (2021) Embedding of 50%PVA/50%PVP blend with Sn0.75M0.25S2, (M = Y, Fe, Cr, V); structural and optical study. Appl Phys A 127:753

  22. Rodríguez-Carvajal J (1993) Phys B (Amsterdam, Neth) 192:55

  23. Lutterotti L (2010) Nucl Instrum Methods Phys Res B 268:334

  24. M-Martínez F, González F, Lima E, Bosch P, Pfeiffer H (2010) J Mex Chem Soc 54(1):2

  25. Bosi F, Lucchesi S, Giusta AD (2002) Structural relationships in (Mn1−xZnx)Mn2O4(0 ≤ x ≤ 0.26): The “dragging effect” of the tetrahedron on the octahedron. Am Mineralogist 87:1121–1127

  26. Gordy W (1946) J Chem Phys 14(5):305

  27. Smit RP (1956) J Phys Chem 60(9):1293

  28. Amri A, Jiang Z-T, Zhao X, Xie Z, Yin C-Y, Ali N, Mondinos N, Rahman MM, Habibi D (2014) Tailoring the physicochemical and mechanical properties of optical copper–cobalt oxide thin films through annealing treatment. Surf Coat Technol 239:212–221

    Article  CAS  Google Scholar 

  29. Tian ZY, Vieker H, Kouotou PM, Beyer A (2015) In situ characterization of Cu-Co oxides for catalytic application. Faraday Discuss 177:249–262

    Article  CAS  Google Scholar 

  30. La Rosa-Toro A, Berenguer R, Quijada C, Montilla F, Morallo´n E, Va´zquez JL (2006) Preparation and characterization of copper-doped cobalt oxide electrodes. J Phys Chem B 110:24021–24029

    Article  Google Scholar 

  31. Zhong M, Yang D, Xie C, Zhang Z, Zhou Z, Bu X-H (2016) Yolk-shell MnO@ZnMn2O4 /N-C nanorods derived from α-MnO2 /ZIF-8 as anode materials for lithium ion batteries. Small 12(40):5564–5571

  32. Heiba ZK, Farag NM, El-naggar AM, Abdellatief M, Aldhafiri AM, Mohamed MB (2021) Effect of Mo-doping on the structure, magnetic and optical characteristics of nano CuCo2O4. J Mater Res Technol 10:832–839

  33. Dawood MS, Elmosalami TA, Desoky WM (2021) Opt Mater 117:111101

  34. Heiba ZK, Mohamed MB, El-naggar AM, Altowairqi Y, Kamal AM (2021) Impact of ZnCdS/M (M = Co, Fe, Mn, V) doping on the structure and optical properties of PVA/PVP polymer. J Polym Res 28(12):1

    Article  Google Scholar 

  35. Mohamed SH, Drese R (2006) Structural and optical properties of direct current sputtered zinc aluminum oxides with a high Al concentration. Thin Solid Films 513:64–71

    Article  CAS  Google Scholar 

  36. Rattana T, Suwanboon S, Amornpitoksuk P, Haidou A, Limsuwan P, Alloys J (2009) Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modified zinc nitrate solution. Compounds 480:603–607

    Article  CAS  Google Scholar 

  37. Wahba AM, Mohamed MB, Imam NG (2016) Correlating structural, magnetic, and luminescence properties with the cation distribution of Co0.5Zn0.5Fe2O4 nanoferrite. J Magn Magn Mater 408:51–59

  38. Manikandan A, Vijaya JJ, Kennedy LJ, Bououdina M (2013) Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method. J Mol Struct 1035:332–340

  39. Heiba ZK, El-naggar AM, Mohamed MB, Altowairqi Y, Kamal AM (2021) Appl Phys A 127(12):1

Download references

Acknowledgements

The authors thank the support of Taif University Researchers Supporting Project number (TURSP-2020/12), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zein K. Heiba or Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B. & Badawi, A. Structure and optical properties of nano-ZnMn2O4/CuS solid solution heterostructure. J Sol-Gel Sci Technol 101, 637–648 (2022). https://doi.org/10.1007/s10971-022-05752-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05752-w

Keywords

Navigation