Skip to main content
Log in

Oxidation resistance and heat transfer simulation of MoSi2-based coatings on carbon fiber reinforced C-Al2O3 aerogel composite

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fiber-reinforced aerogels with excellent properties such as low density and low thermal conductivity are potential thermal insulation materials. The slurry method and the embedding sintering method were used to fabricate MoSi2-aluminoborosilicate glass coatings on the surface of a carbon fiber-reinforced C-Al2O3 aerogel composite under a low-oxygen atmosphere. The microstructure and phase composition of the coatings with different MoSi2 contents before and after static oxidation were investigated. The resulting composite exhibited excellent radiating properties and outstanding oxidation resistance. The total emissivity of the as-prepared coatings was above 0.8185 in the wavelength range of 300–2500 nm. The sample with 40 wt% MoSi2 in the outer coating had superior thermal endurance with a weight loss of only 0.54% after isothermal oxidation at 1200 °C for 180 min. This can be attributed to the optimum viscosity of the binder, which would relieve thermal stress defects and block oxygen diffusion. To further evaluate the thermal protection performance of the coatings, the heat transfer characteristics were simulated using the Fluent software package.

Graphical abstract

Highlights

  • MoSi2-aluminoborosilicate glass coating was prepared on the C-Al2O3 aerogel composite.

  • The sample exhibited excellent radiating property and outstanding oxidation resistance.

  • The heat transfer characteristics were simulated using the Fluent software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang C, Qin J, Yang QC, Zhang SL, Bao W (2015) Design and heat transfer characteristics analysis of combined active and passive thermal protection system for hydrogen fueled scramjet. Int J Hydrog Energy 40(1):675–682

    Article  CAS  Google Scholar 

  2. Feng Y, Dong T-S, Li G-L, Wang R, Zhao X-W, Liu Q (2020) High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings. J Alloy Compd 828:154266

    Article  CAS  Google Scholar 

  3. Shao GF, Lu YC, Hanaor DAH, Cui S, Jiao J, Shen XD (2019) Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems. Corros Sci 146:233–246

    Article  CAS  Google Scholar 

  4. Du B, Zhou S, Zhang X, Hong C, Qu Q (2018) Preparation of a high spectral emissivity TaSi2-based hybrid coating on SiOC-modified carbon-bonded carbon fiber composite by a flash sintering method. Surf Coat Technol 350:146–153

    Article  CAS  Google Scholar 

  5. Mao J, Ding S, Li Y, Li S, Liu F, Zeng X, Cheng X (2019) Preparation and investigation of MoSi2/SiC coating with high infrared emissivity at high temperature. Surf Coat Technol 358:873–878

    Article  CAS  Google Scholar 

  6. Zhao G, Xu B, Ren K, Shao G, Wang Y (2020) Oxygen diffusion through environmental barrier coating materials. Ceram Int 46(11):19545–19549

    Article  CAS  Google Scholar 

  7. Zhang XF, Zhou KS, Liu M, Deng CM, Deng CG, Niu SP, Xu SM (2017) Oxidation and thermal shock resistant properties of Al-modified environmental barrier coating on SiCf/SiC composites. Ceram Int 43(16):13075–13082

    Article  CAS  Google Scholar 

  8. Wing BL, Halloran JW (2018) Subsurface oxidation of boron nitride coatings on silicon carbide fibers in SiC/SiC ceramic matrix composites. Ceram Int 44(14):17499–17505

    Article  CAS  Google Scholar 

  9. Wang C, Li K, He Q, Su Y, Huo C, Shi X (2018) Oxidation resistance and mechanical properties of LaB6-MoSi2-SiC ceramic coating toughened by SiC nanowires. Ceram Int 44(14):16365–16378

    Article  CAS  Google Scholar 

  10. Yang X, Quan H, Wang K (2020) SiC/Si–ZrSi2–ZrB2-HfB2/SiC coating for oxidation protection of C/C composites prepared by three-step method. J Alloy Compd 836:155532

    Article  CAS  Google Scholar 

  11. Li B, Li H, Yao X, Chen Y, Hu X, Feng G, Lu J (2020) Ablation behavior of sharp leading edge parts made of rare earth La-compound modified ZrB2 coated C/C composites. Corros Sci 175:108895

    Article  CAS  Google Scholar 

  12. Kubota Y, Miyamoto O, Aoki T, Ishida Y, Ogasawara T, Umezu S (2019) New thermal protection system using high-temperature carbon fibre-reinforced plastic sandwich panel. Acta Astronaut 160:519–526

    Article  CAS  Google Scholar 

  13. Li Y, Wu J, Wu X, Suo H, Shen X, Cui S (2019) Synthesis of bulk BaTiO3 aerogel and characterization of photocatalytic properties. J Sol-Gel Sci Technol 90(2):313–322

    Article  CAS  Google Scholar 

  14. Zhao Y, Zhong K, Liu W, Cui S, Zhong Y, Jiang S (2020) Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel. Cellulose 27(13):7663–7675

    Article  CAS  Google Scholar 

  15. Zhu K, Yan W, Liu S, Wu X, Cui S, Shen X (2020) One-step hydrothermal synthesis of MnOx-CeO2/reduced graphene oxide composite aerogels for low temperature selective catalytic reduction of NOx. Appl Surf Sci 508:145024

    Article  CAS  Google Scholar 

  16. Zhu J, Zhao F, Xiong R, Peng T, Ma Y, Hu J, Xie L, Jiang C (2020) Thermal insulation and flame retardancy of attapulgite reinforced gelatin-based composite aerogel with enhanced strength properties. Composites, Part A 138: 106040

  17. Cai HF, Jiang YG, Feng J, Chen Q, Zhang SZ, Li LJ, Feng JZ (2020) Nanostructure evolution of silica aerogels under rapid heating from 600 °C to 1300 °C via in-situ TEM observation. Ceram Int 46(8):12489–12498

    Article  CAS  Google Scholar 

  18. Yang ZY, Zhu DC, Li HK (2020) A chitosan-assisted co-assembly synthetic route to low-shrinkage Al2O3-SiO2 aerogel via ambient pressure drying. Microporous Mesoporous Mater 293:9

    Article  Google Scholar 

  19. Hu PD, Tan BH, Long MC (2016) Advanced nanoarchitectures of carbon aerogels for multifunctional environmental applications. Nanotechnol Rev 5(1):23–39

    Google Scholar 

  20. Patil SP, Shendye P, Markert B (2020) Molecular dynamics simulations of silica aerogel nanocomposites reinforced by glass fibers, graphene sheets and carbon nanotubes: a comparison study on mechanical properties. Compos Part B 190:8

    Article  Google Scholar 

  21. Shao G, Wang Q, Wu X, Jiao C, Cui S, Kong Y, Jiao J, Shen X (2017) Evolution of microstructure and radiative property of metal silicide–glass hybrid coating for fibrous ZrO2 ceramic during high temperature oxidizing atmosphere. Corros Sci 126:78–93

    Article  CAS  Google Scholar 

  22. Tao X, Liu JC, Xu XJ, Hong WH, Wang MC, Guo AR, Hou F (2016) Comparative study of MoSi2-borosilicate glass coatings on fibrous ceramics prepared by in-situ reaction method and two-step method. J Alloy Compd 684:488–495

    Article  CAS  Google Scholar 

  23. Wang CC, Li KZ, He DY, Huo CX, He QC, Shi XH (2019) Microstructure and oxidation behavior of MoSi2-based coating on carbon/carbon composites. Ceram Int 45(17):21960–21967

    Article  CAS  Google Scholar 

  24. Deng JL, Hu KY, Lu BF, Ma X, Li H, Wang JH, Fan SW, Zhang LT, Cheng LF (2020) Effect of B4C addition on the oxidation behavior of borosilicate glass repairing coating for C/C brake materials. Ceram Int 46(10):14496–14504

    Article  CAS  Google Scholar 

  25. Wu J, Xu X, Xiong Y, Guan X, Jiao M, Yao X, Hu X, Xu S, Tao X, Du H (2020) Preparation and structure control of a scalelike MoSi2-borosilicate glass coating with improved contact damage and thermal shock resistance. Ceram Int 46(6):7178–7186

    Article  CAS  Google Scholar 

  26. Tan W, Adducci M, Petorak C, Thompson B, Brenner AE, Trice RW (2016) Effect of rare-earth dopant (Sm) concentration on total hemispherical emissivity and ablation resistance of ZrB2/SiC coatings. J Eur Ceram Soc 36(16):3833–3841

    Article  CAS  Google Scholar 

  27. Wen C-D, Mudawar I (2006) Modeling the effects of surface roughness on the emissivity of aluminum alloys. Int J Heat Mass Transf 49(23-24):4279–4289

    Article  CAS  Google Scholar 

  28. Brodu E, Balat-Pichelin M, Sans JL, Freeman MD, Kasper JC (2015) Efficiency and behavior of textured high emissivity metallic coatings at high temperature. Mater Des 83:85–94

    Article  CAS  Google Scholar 

  29. Huang J, Li Y, He X, Song G, Fan C, Sun Y, Fei W, Du S (2012) Enhanced spectral emissivity of CeO2 coating with cauliflower-like microstructure. Appl Surf Sci 259:301–305

    Article  CAS  Google Scholar 

  30. Shao G, Lu YC, Wu XD, Wu J, Cui S, Jiao J, Shen XD (2017) Preparation and thermal shock resistance of high emissivity molybdenum disilicide- aluminoborosilicate glass hybrid coating on fiber reinforced aerogel composite. Appl Surf Sci 416:805–814

    Article  CAS  Google Scholar 

  31. Usman U, Takaki M, Kubota T, Okamoto Y (2005) Effect of boron addition on a MoO3/Al2O3 catalyst physicochemical characterization. Appl Catal, A 286(1):148–154

    Article  CAS  Google Scholar 

  32. Wang Y, Li J, Zhang L, Ling H, Li Y (2014) Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner. Jom 66(7):1253–1264

    Article  CAS  Google Scholar 

  33. Srinivas G, Potti SR (2014) Numerical simulation of axial flow fan using Gambit and Fluent. Int J Res Eng Technol 3:586–590

    Article  Google Scholar 

  34. Pirasaci T, Wickramaratne C, Moloney F, Goswami DY, Stefanakos E (2017) Dynamics of phase change in a vertical PCM capsule in the presence of radiation at high temperatures. Appl Energy 206:498–506

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Project of Jiangsu Province (BE2019734, BE2017151, BE2016171), the Major Program of Natural Science Fund in Colleges and Universities of Jiangsu Province (15KJA430005), the Program of Science and Technology of Suqian City (M201704, H201801,H201803), the National Natural Science Foundation of China (51702156,81471183), Natural Science Foundation of Jiangsu Province (BK20200711), the Key Laboratory of Advanced Functional Composite Technology (6142906210508), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Brand Major Program Development of Jiangsu Higher Education Institutions (PPZY2015B128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Cui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, T., Wu, Z., Wang, Z. et al. Oxidation resistance and heat transfer simulation of MoSi2-based coatings on carbon fiber reinforced C-Al2O3 aerogel composite. J Sol-Gel Sci Technol 106, 393–405 (2023). https://doi.org/10.1007/s10971-022-05746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05746-8

Keywords

Navigation