Skip to main content
Log in

Transparent oxyfluoride glass-ceramics obtained by different sol-gel routes

  • Review Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

A Correction to this article was published on 20 April 2022

This article has been updated

Abstract

Oxyfluoride glass-ceramics (OxGC) present attractive optical properties suitable for many applications. The incorporation of fluoride crystals into silicate matrices improves the luminescence properties, producing materials appropriate for photonic applications. Many papers focus on the preparation of oxyfluoride glass ceramics by melting quenching (MQ), the most widely utilized process. However, in the last decades, the sol-gel process has gained increasing interest as an alternative method for avoiding the MQ drawbacks. The first sol-gel route for producing glass-ceramics with rare earth (RE) doped fluoride nanocrystals were based on the preparation and further mixing of two separate sols. The crystallization of the fluoride nanoparticles occurs during the controlled thermal treatment. More recently, a new sol-gel strategy was proposed, based on the previous synthesis of aqueous fluoride nanoparticles suspensions that are subsequently dispersed in a silica sol-gel matrix. This paper summarizes the most relevant results as well as the advantages and disadvantages of each route and their limitations for future industrial scale up. The synthesis routes are compared considering the structural and morphological characterization, elucidating the crystallization mechanisms, and evaluating the optical properties of the resulting materials. Particular attention is paid to the possibility of producing transparent oxyfluoride glass ceramics films with improved luminescence and enhanced optical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Deubener J, Allix M, Davis MJ, Durán A, Höche T, Honma T, Komatsu T, Krüger S, Mitra I, Müller R, Nakane S, Pascual MJ, Schmelzer JWP, Zanotto ED, Zhou S (2018) Updated definition of glass-ceramics. J Non-Cryst Solids 501:3–10.

    Article  CAS  Google Scholar 

  2. Liu X, Zhou J, Yue Y, Qiu J (2018) Transparent glass-ceramics functionalized by dispersed crystals. Prog Mater Sci 97:38–96.

    Article  CAS  Google Scholar 

  3. Beall GH, Pinckney LR (1999) Nanophase glass-ceramic. J Am Ceram Soc 82:5–16.

    Article  CAS  Google Scholar 

  4. Fedorov P, Luginina A, Popov A (2015) Transparent oxyfluoride glass ceramics. J Fluor Chem 172:22–50.

    Article  CAS  Google Scholar 

  5. Dejneka M (1998) The luminescence and structure of novel transparent oxyfluoride glass-ceramics. J Non-Cryst Solids 239(no. 1-3):149–155.

    Article  CAS  Google Scholar 

  6. Mortier M, Bensalah A, Dantelle G, Patriarche G, Vivien D (2007) Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: Synthesis and optical properties. Opt Mater 29(no. 10):1263–1270.

    Article  CAS  Google Scholar 

  7. Stevenson AJ, Serier-Brault H, Gredin P, Mortier M (2011) Fluoride materials for optical applications: Single crystals ceramics glasses, and glass-ceramics. J Fluor Chem 132:1165–1173. pp

    Article  CAS  Google Scholar 

  8. Wang Y, Ohwaki J (1993) New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl Phys Lett 63(no. 24):3268–3270.

    Article  CAS  Google Scholar 

  9. Gorni G, Pascual MJ, Caballero A, Velázquez JJ, Mosa J, Castro Y, Durán A (2017) Crystallization mechanism in sol-gel oxyfluoride glass-ceramics. J Non-Cryst Solids 501:145–152.

    Article  CAS  Google Scholar 

  10. de Pablos-Martín A, Durán A, Pascual M (2012) Nanocrystallisation in oxyfluoride systems: mechanism of crystallisation and photonic properties. Int Mater Rev 57:165–186.

    Article  CAS  Google Scholar 

  11. Berneschi S, Soria S, Righini G, Alombert-Goget G, Chiappini A, Chiasera A, Jestin Y, Ferrari M, Guddala S, Moser E, Bhaktha S, Boulard B, Duverger Arfuso C, Turrel S (2010) Rare-earth-activated glass-ceramic waveguides. Optical Mater 32:1644–1647.

    Article  CAS  Google Scholar 

  12. Tikhomirov VK, Méndez-Ramos J, Rodríguez VD, Furniss D, Seddon AB (2007) Gain cross-sections of transparent oxyfluoride glass-ceramics single doped with Ho3+ (at 2.0um) and with Tb3+ (at 1.8 nm). J Alloy Compd 436(no. 1-2):216–220.

    Article  CAS  Google Scholar 

  13. Dantelle G, Mortier M, Wei Y, Chi X, Lui X, Wei y H. Guo R (2013) Novel upconversion behavior in Ho3+-doped transparent oxyfluoride glass-ceramics containing NaYbF4 nanocrystals. J Am Ceram Soc 96:2073–2076.

    Article  CAS  Google Scholar 

  14. Wipada S, Yongsiri P, Eitsseyeam S, Tunkasiri T, Pengpat K (2019) Comparison between incorporation and conventional fabrication techniques of diopside-based glass-ceramics. Mater Lett 249:160–164.

    Article  CAS  Google Scholar 

  15. Brinker CJ, Hurd AJ, Shunk PR, Frye GC, Ashley CS (1992) Review of sol-gel thin film formation. J Non-Cryst Solids s. 147-148:424–436.

    Article  Google Scholar 

  16. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S (2014) Sol-gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 214:17–37.

    Article  CAS  Google Scholar 

  17. Gorni G, Velázquez JJ, Mosa J, Balda R, Fernández J, Durán A, Castro Y (2018) Transparent glass-ceramics produced by sol-gel: a suitable alternative for photonic materials Materials 11(no. 21):1–30

    Google Scholar 

  18. Fujihara S, Tada M, Kimura T (1998) Sol-gel processing of LaF3 thin films. J Ceram Soc Jpn 106(no. 1229):124–126.

    Article  CAS  Google Scholar 

  19. Fujihara S, Mochizuki C, Kimura T (1999) Formation of LaF3 microcrystals in sol-gel silica. J Non-Cryst Solids 244:267–274.

    Article  CAS  Google Scholar 

  20. Biswas A, Maciel GS, Friend CS, Prassad PN (2003) Upconversion properties of a transparent Er3+-Yb3+ codoped LaF3-SiO2 glass-ceramics prepared by sol-gel method. J Non-Cryst Solids 319(no. 2-3):393–397.

    Article  Google Scholar 

  21. Pawlik N, Szpikowska-Sroka B, Tomasz y A. P. Wojciech G (2021) Studies of sol-gel evolution and distribution of Eu3+ ions in glass-ceramics containing LaF3 nanocrystals depending on initial sols composition. Int J Mol Sci 22(n° 3):1–22.

    Google Scholar 

  22. Kajihara K (2013) Recent advances in sol-gel synthesis of monolithic silica and silica based glasses. J Asian Ceram Soc 1:121–133.

    Article  Google Scholar 

  23. Pichaandi J, van Veggel y M. Raudsepp FCJM (2009) Effective control of the ratio of red to green emission in upconverting LaF3 nanoparticles codoped with Yb3+ and Ho3+ ions embedded in a silica matrix. ACS Appl Mater Interfaces 2(n° 1):157–164.

    Google Scholar 

  24. Hong B-C, Kowano K (2006) Luminescence studies of the rare earth ions-doped CaF2 and MgF2 films for wavelenght conversion. J Alloy Compd s. 408-412(no. 9):838–841.

    Article  CAS  Google Scholar 

  25. Shan Z, Chen D, Yu Y, Lin H, Wang Y (2010) Luminescence in rare earth-doped transpatent glass ceramics containing GdF3 nanocrystals for lighting applications. J Mater Sci 45:2775–2779.

    Article  CAS  Google Scholar 

  26. Cruz ME, Li J, Gorni G, Durán A, Mather GC, Balda R, Fernández J, Castro Y (2021) Nd3+ doped SiO2-KLaF4 oxyfluoride glass-ceramics prepared by sol-gel. J Lumin 235:1–7.

    Article  CAS  Google Scholar 

  27. Szpikowska-Sroka B, Zur L, Czoik R, Goryczka T, Swiarew A, Zadlo M (2013) Long-lived emission from Eu3+:PbF2 nanocrystals distributed into sol-gel silica glass. J Sol-Gel Sci Technol 2013:278–283.

    Article  CAS  Google Scholar 

  28. Durán A, GlaSS Group (2022) [On line]. Available: http://glass.icv.csic.es/ [Accessed February 2022].

  29. Castro Y, Durán A, Lanthnide-doped oxyfluoride transparent glas-ceramics prepared by sol-gel. In Sol-Gel derived optical and photonic materials, E Ltd., Ed., Elsevier, 2021, pp. 227–252.

  30. Gorni G, Velázquez JJ, Mosa J, Mather GC, Serrano A, Vila M, Castro GR, Bravo D, Balda R, Fernandez J, Duran A, Castro Y (2019) Transparent sol-gel oxyfluoride glass-ceramics with high crystalline fraction and study of RE incorporation. Nanomaterials 9(no. 530):1–16.

    Google Scholar 

  31. Rywak A, Burlitch JM (1996) Sol-gel synthesis of nanocrystalline magnesium fluoride: its use in the preparation of MgF2-SiO2 composites. Chem Mater 8(no. 1):60–67.

    Article  CAS  Google Scholar 

  32. Cruz ME, Durán A, Balda R, Fernández J, Mather GC, Castro Y (2020) A new sol-gel route towards Nd3+-doped SiO2-LaF3 glass ceramics for photonic applications. Mater Adv 1:3589–3596.

    Article  CAS  Google Scholar 

  33. Georgescu S, Voiculescu AM, Matei C, Secu CE, Negrea RF, Secu M (2013) Ultraviolect and visible up-conversion luminescence of Er3+/Yb3+ co-doped CaF2 nanocrystals in sol-gel derived glass-ceramics. J Lumin 143:150–156. https://doi.org/10.1016/j.jlumin.2013.04.002.

    Article  CAS  Google Scholar 

  34. Cruz ME, Li J, Gorni G, Durán A, Mather GC, Balda R, Fernandez J, Castro Y (2021) Crystallization process and site selective excitation of Nd3+ in LaF3/NaLaF4 sol-gel synthesized transparent glass-ceramics. Crystals 11.

  35. Velázquez JJ, Mosa J, Gorni G, Balda R, Fernández J, Durán A, Castro Y (2019) Novel sol-gel SiO2-NaGdF4 transparent nano-glass-ceramics. J. Non-Cryst. Solids 520.

  36. Kemnitz E, Wuttke S, Coman SM (2011) Tailor-Made MgF2-Based Catalysts by Sol-Gel Synthesis. Eur. J. Inorg. Chem 4773–4794.

  37. Dash A, Kumar Pal y S. B. Rai S (2020) Up-conversion study of CaF2 based oxy-fluoride core-shell particulate nano-glass ceramics via sol-gel method: Effect of Yb3+ concentration and cell viability study. Optik 222:1–12.

    Article  CAS  Google Scholar 

  38. del-Castillo J, Yanes AC, Méndez-Ramos J, Tikhomirov VK, Moshchalkov y V. D. Rodríguez VV (2010) Sol-Gel preparation and white up.conversion luminescence in rare earth doped PbF2 nanocrystals dissolved in silica glass. J Solgel Sci Technol 53:509–514.

    Article  CAS  Google Scholar 

  39. Hegde ND, Hirashima H (2007) Two step sol-gel processing of TEOS based hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor. J Porous Mater 14:164–171.

    Article  CAS  Google Scholar 

  40. Das I, Sagadevan S, Chowhury ZZ, Hoque ME (2018) Development, optimization and characterization of a two step sol-gel synthesis route for ZnO/SnO2 nanocomposite. J Mater Sci 29:4128–4135.

    CAS  Google Scholar 

  41. Sakka S (2013) Sol-Gel process and Applications. In Handbook of Advanced Ceramics, pp. 883–910.

  42. Hench L, West JK (1990) The Sol-Gel process. Chem Rev 90:33–72.

    Article  CAS  Google Scholar 

  43. Boonstra AH, Bernards T (1988) The dependence of the gelation time on the hydrolysis time in a two-step SiO2 sol-gel process. J Non-Cryst Solids 105:207–213.

    Article  CAS  Google Scholar 

  44. Innocenzi P, Abdirashid MO, Guglielmi M (1994) Structure and properties of Sol-Gel coating from methyltrietoxysilane and tetraethoxisilane. J Sol-Gel Sci Technol 3:47–55.

    Article  CAS  Google Scholar 

  45. Fujihara S, Kato T, Kimura T (2000) Influence of solution composition on the formation of SiO2/LaF3 composites in the sol-gel process. J Mater Sci 35:2763–2767.

    Article  CAS  Google Scholar 

  46. Yu Y, Chen D, Wang Y, Luo W, Zheng Y, Cheng Y, Zhou L (2006) Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol-gel method. Mater Chem Phys 100:241–245.

    Article  CAS  Google Scholar 

  47. Zhou L, Chen D, Luo W, Wang Y, Yu Y, Liu F (2007) Transparent glass ceramic containing Er3+:CaF2 nanocrystals prepared by sol-gel method. Mater Lett 61:3988–3990.

    Article  CAS  Google Scholar 

  48. Tada M, Fujihara S, Kimura T (1999) Sol-gel processing and characterization of alkaline earth and rare-earth fluoride thin films. J Mater Res 14(n° 4).

  49. Jiang Y, Fan J, Jiang B, Mao X, Zhou C (2016) Structure and optical properties of transparent Er3+- doped CaF2-silica glass ceramic prepared by controllable sol-gel method. Ceram Int 42:9571–9576.

    Article  CAS  Google Scholar 

  50. Wenqin L, Wang Y, Bao F, Zhou L, Wang X (2004) Crystallization behaviour of PbF2-SiO2 based bulk xeorgels. J Non-Cryst Solids 347(no. 1-3):31–38.

    Article  CAS  Google Scholar 

  51. Secu C, Secu M, Ghica C, Mihut L (2011) Rare-earth doped sol-gel derived oxyfluoride glass-ceramics: Structural and optical characterization. Opt Mater 33:1770–1774.

    Article  CAS  Google Scholar 

  52. Levy D, Reisfeld y D. Avnir R (1984) Fluorescence of europium (III) trapped in silica gel-glass as a probe for cation binding and for changes in cage symmetry during gel dehydration. Chem Phys Lett 109(n° 6-7):593–597.

    Article  CAS  Google Scholar 

  53. Nassar EJ, Ciuffi KJ, Lima SJ (2003) Ribero y Y. Messaddeq, Europium incorportated in silica matrix obtained by sol-gel: luminescent materials. Matt Res 6(n° 4):557–562.

    Article  CAS  Google Scholar 

  54. Kolesnikov IE, Povolotskiy AV, Mamonova DV, Kolesnikov EY, Kurochkin AV, Lähderanta y M. D. Mikhailov E (2018) Asymmetry ratio as a parameter of Eu3+ local enviroment in phosphors. J Rare Earth 36:474–481.

    Article  CAS  Google Scholar 

  55. Reisfeld R, Zigansky y M. Gaft E (2004) Europium probe for estimation of site simmetry in glass films, glasses and crystals. Mol Phy 102(n° 11-12):1319–1330.

    Article  CAS  Google Scholar 

  56. Velázquez JJ, Rodriguez VD, Yanes AC, del Castillo J, Méndez-Ramos J (2012) Photon down-shifting by energy trasnfer from Sm3+ to Eu3+ ions in sol-gel SiO2-LaF3 nano-glass-ceramics for photovoltaics. Appl Phys B no. 108:577–583.

    Article  CAS  Google Scholar 

  57. Velázquez JJ, Mosa J, Gorni G, Balda R, Fernandez J, Pascual L, Durán A, Castro Y (2019) Transparent SiO2-GdF3 sol-gel nano-glass ceramics for optical applications. J Sol-Gel Sci Technol 89:322–332.

    Article  CAS  Google Scholar 

  58. Pawlik N, Szpikoska-Sroka B, Goryczka T, Pisarki WA (2021) Studies of sol-gel evolution and distribution of Eu3+ ions in glas-ceramics containing LaF3 nanocrystals depending on initial sols composition. Int J Mol Sci 22(no. 996):1–22.

    Google Scholar 

  59. Ha HM, Hoa TTQ, Long NN, Vi y P. V. Do LV (2016) Optical properties of Eu3+ ions in LaF3 nanocrystals. J Sci Technol 54(n° 1A):88–95.

    Google Scholar 

  60. Zhang X, Hayakawa T, Nogami M, Ishikawa Y (2010) Selective synthesis and luminescence properties of nanocrystalline GdF3:Eu3+ with hexagonal and orthorombic structures. J. Nanomater 2010:1–8.

  61. Ptacek P, Schäfer H, Kömpe y M. Haase K (2007) Crystal phase control of luminescing NaGdF4:Eu3+ nanocrystals. Adv Funct Mater 17:3743–3848.

    Article  CAS  Google Scholar 

  62. Fujihara S, Koki S, Kimura T (2004) Strcuture and optical properties of (Gd, Eu)F3-nanocrystallized sol-gel silica films. J Mater Chem 14:1331–1335.

    Article  CAS  Google Scholar 

  63. Fujihara S, Kitta y T. Kimura S (2003) Porous phosphor thin films of oxyfluoride SiO2-BaMgF4: Eu2+ glass-ceramics prepared by sol-gel method. Chem Lett 32:928–929.

    Article  CAS  Google Scholar 

  64. Rodrigues EM, Souza ER, Monteiro JHSK, Gaspar RD, Mazali IO, Sigoli A (2012) Non-stabilized europium-doped lanthanum oxyfluoride and fluoride nanoparticles well dispersed in thin silica films. J Mater Chem 22:24109–24123.

    Article  CAS  Google Scholar 

  65. Wang F, Fan X, Pi D, Wang M (2005) Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles. Solid State Commun 133:775–779.

    Article  CAS  Google Scholar 

  66. Kuman N, Singh NP, Singh LP, Srivastava SK (2015) Enhacement of luminescence in white emitting strontium fluoride core @ calcium fluoride shell nanoparticles. Nanoscale Res Lett 10:347.

  67. Boyer J-C, Gagnon J, Cuccia LA, Capobianco JA (2007) Synthesis, characterization and spectrocopy of NaGdF4: Ce3+, Tb3+/NaYF4 Core/Shell nanoparticles. Chem Mater 19:3358–3360.

    Article  CAS  Google Scholar 

  68. Dong M, Li X, Chi F, Wei X (2017) Trivalent Yb/Ho/Ce tri-doped core/shell NaYF nanoparticles for tunable upconversion luminescence from green to red. J Rare Earth 35(no. 7):629–636.

    Article  CAS  Google Scholar 

  69. Wang F, Zhang Y, Fan X, Wang M (2006) Facile Synthesis of water-soluble LaF3:Ln3+ nnocrystals. Mater Chem 16:1031–1034.

    Article  CAS  Google Scholar 

  70. Wei Y, Liu X, Chi X, Wei R, Guo H (2013) Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+ glass-ceramics. J Alloy Compd 578:385–388.

    Article  CAS  Google Scholar 

  71. Wang Y, Cai R, Liu Z (2011) Controlled synthesis of NaYF4: Yb, Er nanocrystals with upconversion fluorescence via a facile hydrothermal procedure in aqueous solution. Cryst Eng Comm 13:1772–1774.

    Article  CAS  Google Scholar 

  72. Secu M, Secu CE, Ghica C (2011) Eu3+-doped CaF2 nanocrystals in sol-gel derived glass-ceramics. Opt Mater 33:613–617.

    Article  CAS  Google Scholar 

  73. Pawlik N, Szpikowska-Sroka B, Goryczka T, Pisarski WA (2019) Sol-Gel Glass-Ceramic materials containing CaF2:Eu3+ fluoride nanocrystals for reddish-orange photoluminescence applications. Appl Sci 9:1–11.

    Article  CAS  Google Scholar 

  74. Li J, Chen X, Tang L, Li Y, Wu Y (2018) Fabrication and properties of transparent Nd-doped BaF2 ceramics. J Am Ceram Soc 102:178–184. https://doi.org/10.1111/jace.15915.

    Article  CAS  Google Scholar 

  75. Santana-Alonso A, Yanes AC, Méndez-Ramos J, del-Castillo J, Rodriguez VD (2010) Sol-Gel transparent nano-glass-ceramics containing Eu3+-doped NaYF4 nanocrystals. J Non-Cryst Solids 356:933–936.

  76. Tiwari SP, Maurya SK, Yadav RS, Kumar A, Kumar V, Joubert M-F, Swart HC (2018) Future propects of fluoride based upconversion nanoparticles for emerging applications in biomedical and energy harvesting. J Vac Sci Technol 36:1–15.

    Google Scholar 

  77. Kemnitz E, Mahn S, Krahl T (2020) Nano metal fluorides: small particles with great properties. ChemTexts 6(no. 9):1–27.

    Google Scholar 

  78. Koczhur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polivinilpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905.

    Article  CAS  Google Scholar 

  79. Iijima y H. Kamiya M (2009) Sruface modification for improving the stability of nanoparticles in liquid media. KONA Powder Part J 27:119–129.

    Article  Google Scholar 

  80. Abdullah M, Malik SR, Iqbal MH, Sajid MM, Shad NA, Hussain SZ, Razzaq y Y. Javed W (2018) Sedimentation and stabilization of nano-fluids with dispersant. Eng Asp 554(n° 5):86–92.

    Article  CAS  Google Scholar 

  81. Leeuwenburgh S, Ana y J. A. Jansen ID (2010) Sodicum citrate as an effective dispersant for the synhesis of inorganic-organic composites with a nanodispersed mineral phase. Acta Biomater 6(n° 3):836–844.

    Article  CAS  Google Scholar 

  82. Lijima M, Yamazaki M, Nomura y H. Kamiya Y (2013) Effect of structure of cationic dispersant on stability of carbon black nanoparticles and further processability through layer-by-layer surface modification. Chem Eng Sci 85(n° 14):30–37.

    Google Scholar 

  83. Gorni G, Balda R, Fernández J, Velázquez JJ, Pascual L, Mosa J, Durán Y, Castro A (2017) 20SiO2-20LaF3 oxyfluoride glass-ceramic coating doped with Nd3+ for optical applications. Int J Appl Glass Sci 9:2018–2217.

Download references

Acknowledgements

The authors acknowledge financial support from MINECO under projects PID2020-115419GB-C21 (AEI/FEDER, UE). This article is a part of dissemination activities of the project FunGlass, which has received funding from the European Union´s Horizon 2020 research and innovation program under grant agreement No 739566. The authors would like to thank Prof. Rolindes Balda from Física Aplicada, Escuela Superior de Ingeniería, Universidad del País Vasco (UPV-EHU), 48013 Bilbao (Spain) and Centro de Física de Materiales, (UPV/EHU-CSIC), 20018 San Sebastian, Spain and Prof. Joaquin Fernandez from Donostia International Physics Center DIPC, 20018 San Sebastian (Spain) for their collaboration in the characterization and analysis of optical properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Cruz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, M.E., Castro, Y. & Durán, A. Transparent oxyfluoride glass-ceramics obtained by different sol-gel routes. J Sol-Gel Sci Technol 102, 523–533 (2022). https://doi.org/10.1007/s10971-022-05743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05743-x

Keywords

Navigation