Skip to main content
Log in

Dip-coating sol–gel preparation and characterization of Rhodamine 6G-doped nanostructured TiO2 thin films on structural and spectroscopic properties

  • Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Structural and spectroscopic properties of nanostructured titanium dioxide (TiO2) thin films prepared by the dip-coating sol–gel process and doped with rhodamine 6G (R6G) were studied. R6G doping was achieved by adding different concentrations of 1 × 10−2, 1 × 10−3, 1 × 10−4, and 1 × 10−5 M rhodamine to a solution that contained titanium isopropoxide as a precursor. The best molar ratio (1: 1: 10: 0.1) of initial raw materials (TTIP: H2O: EtOH: HCl) was chosen to prepare the TiO2 host. TiO2 thin films were deposited on a silicon substrate. X-ray diffraction (XRD) results indicated that the prepared films are amorphous. Atomic force microscopy (AFM) images demonstrate that the surface topography of the films has a homogeneous granular feature. Fourier transform infrared (FTIR) results revealed that the original structural group of R6G molecules is incorporated in the matrix of the TiO2 films. The short-range order of brookite TiO2 phase in the range of (100–700 cm−1) was depicted by Raman spectra. The glass slide was chosen as a substrate to measure the absorbance spectrum of the thin films. Various fluorescence peaks of R6G-doped TiO2 thin films were depicted in the ultraviolet–visible (UV–vis) region under 300 nm pumping wavelength. The fluorescence spectrum suggests that the hybrid solid-state UV and visible laser and optoelectronic device design can be manufactured.

Hybrid R6G-TiO2 nanostructured thin films with different concentrations of R6G were prepared successfully by dip-coating sol–gel technique. The prepared pure and doped films were analyzed by XRD, AFM, FTIR, and Raman techniques. Different fluorescence emission peaks have been obtained in UV–Vis regions. The fluorescence spectrum suggests manufacturing the hybrid solid-state UV and visible laser and optoelectronic device design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. https://doi.org/10.1002/adma.200390087

    Article  CAS  Google Scholar 

  2. Reisfeld R (2001) Prospects of sol-gel technology towards luminescent materials. Opt Mater 16:1–7. https://doi.org/10.1016/S0925-3467(00)00052-5

    Article  CAS  Google Scholar 

  3. Lima CS, Ryub JH, Kimc Do-H, Choc S-Y, Oh W-C (2010) Reaction morphology and the effect of pH on the preparation of TiO2 nanoparticles by a sol-gel method. J Ceram Process Res 11:736–741

    Google Scholar 

  4. Hu L, Jiang Z (1998) Laser action in Rhodamine 6G doped titania-containing ormosils. Opt Commun 148:275–280. https://doi.org/10.1016/S0030-4018(97)00711-6

    Article  CAS  Google Scholar 

  5. Stathatos E, Lianosa P, Couris S (1999) Spectral narrowing in a rhodamine-doped layered TiO2/surfactant thin film. Appl Phys Lett 75:319–321. https://doi.org/10.1063/1.124362

    Article  CAS  Google Scholar 

  6. de Azevedo WM, da Silva Jr EF, Pepe I, Ferreira da Silva A, Tomas SA, Palomino R, Lozada R, Persson C, Ahuja R (2004) Spectroscopic properties of TiO2 sol-gel films doped with rhodamine 6G Dye. 3rd Brazil MRS Meeting, Symposium A, October 10–13.

  7. Palomino-Merino R, Torres-Kauffman J, Lozada-Morales R, Portillo-Moreno O, Garcia-Rocha M, Zelaya-Angel O (2007) Photoluminescence of Rhodamine 6G-doped amorphous TiO2 thin films grown by sol-gel. Vacuum 81:1480–1483. https://doi.org/10.1016/j.vacuum.2007.04.006

    Article  CAS  Google Scholar 

  8. Chen H, Nambu A, Wen W, Graciani J, Zhong Z, Hanson JC, Fujita E, Rodriguez JA (2007) Reaction of NH3 with Titania: N-doping of the oxide and TiN formation. J Phys Chem C 111:1366–1372. https://doi.org/10.1021/jp066137e

    Article  CAS  Google Scholar 

  9. Ameen MA, Arif GK (2020) Structural and spectroscopic study of Ho3+-doped nanotitania host prepared using a sol-gel technique. Luminescence 35:1109–1117. https://doi.org/10.1002/bio.3823

    Article  CAS  Google Scholar 

  10. Devi M, Panigrahi MR, Singh UP (2014) Synthesis of TiO2 nanocrystalline powder prepared by sol-gel technique using TiO2 powder reagent. Adv. Appl Sci Res 5:140–145

    Google Scholar 

  11. Dislich H (1988) In: Klein LC (ed) Sol-gel technology for thin films, fibers, preforms, electronics, and specialty shapes. Noyes, New Jersey.

  12. Kang C-S, Evans E (2021) Synthesis and transformation of hollow rutile titania wires by single spinneret electrospinning with sol-gel chemistry. Fibers 9(18):1–14. https://doi.org/10.3390/fib9030018

    Article  CAS  Google Scholar 

  13. Vogel R, Meredith P, Harvey MD, Rubinsztein-Dunlop H (2004) Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites. Spectrochim Acta A 60:245–249. https://doi.org/10.1016/S13861425(03)00218-X

    Article  CAS  Google Scholar 

  14. Bartl MH, Boettcher SW, Hu EL, Stucky GD (2004) Dye-activated hybrid organic/inorganic mesostructured titania waveguides. J Am Chem Soc 126:10826–10827. https://doi.org/10.1021/ja0480771

    Article  CAS  Google Scholar 

  15. Bouachiba Y, Taabouche A, Bouabellou A, Hanini F, Sedrati C, Merabti H (2020) TiO2 waveguides thin films prepared by sol-gel method on glass substrates with and without ZnO underlayer. Mater Sci Poland 38(3):381–385. https://doi.org/10.2478/msp-2020-0043

    Article  CAS  Google Scholar 

  16. Li Y, Song C, Wang Y, Wei Y, Wei Y, Hu Y (2007) High photoluminescence quantum yield of TiO2 nanocrystals prepared using an alcohothermal method. Luminescence 22(6):540–545. https://doi.org/10.1002/bio.997

    Article  CAS  Google Scholar 

  17. Sakka S, Kamiya K (1980) Glasses from metal alcoholates. J NonCrystal Solids 42(1-3):403–421. https://doi.org/10.1016/0022-3093(80)90040-X

    Article  CAS  Google Scholar 

  18. Pierre AC (2020) Introduction to sol-gel processing, 2nd edn. Springer Nature Switzerland AG, Switzerland. https://doi.org/10.1007/978-3-030-38144-8

  19. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press, Inc, San Diego

  20. Livage J, Babonneau F, Sanchez C (1994) In: Klein LC (ed) Sol-gel chemistry for optical material, in sol-gel optics processing and applications, Springer Science and Business Media, LLC, New York. https://doi.org/10.1007/9781-4615-2750-3_2

  21. Ferreira da Silva A, Pepe I, Gole JL, Tomas SA, Palomino R, de Azevedo WM, da Silva Jr EF, Ahuja R, Persson C (2006) Optical properties of in situ doped and undoped titania nanocatalysts and doped titania sol-gel nanofilms. Appl Surf Sci 252(15):5365–5367. https://doi.org/10.1016/j.apsusc.2005.12.041

    Article  CAS  Google Scholar 

  22. Muaz AKM, Hashim U, Md Arshad MK, Ruslinda AR, Ayub RM, Gopinath SCB, Voon CH, Liu W-W, Foo KL (2015) Effect of annealing temperature on structural, morphological and electrical properties of nanoparticles TiO2 thin films by sol-gel method, International Conference on Nano-electronic Technology Devices and Materials (IC-NET 2015), pp. 020087-1–020087-5.

  23. Essalhi Z, Hartiti B, Lfakir A, Siadat M, Thevenin P (2016) Optical properties of TiO2 Thin films prepared by Sol Gel method. J Mater Environ Sci 7(4):1328–1333

    CAS  Google Scholar 

  24. Chrysicopoulou P, Davazoglou D, Trapalis CHR, Kordas G (1998) Optical properties of very thin (<100 nm) sol–gel TiO2 films. Thin Solid Films 323(1-2):188–193. https://doi.org/10.1016/S0040-6090(97)01018-3

    Article  CAS  Google Scholar 

  25. Su C, Hong B-Y, Tseng C-M (2004) Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today 96(3):119–126. https://doi.org/10.1016/j.cattod.2004.06.132

    Article  CAS  Google Scholar 

  26. Sanchez C, Ribot F (1994) Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. N J Chem 18(10):1007–1047

    CAS  Google Scholar 

  27. Reisfeld R, Brusilovsky D, Eyal M, Miron E, Burstein Z, Ivri J (1989) A new solid-state tunable laser in the visible. Chem Phys Lett 160(1):43–44. https://doi.org/10.1016/0009-2614(89)87552-9

    Article  CAS  Google Scholar 

  28. Arbeloa FL, Gonzalez IL, Ojeda PR, Arbeloa IL (1982) Aggregate formation of Rhodamine 6G in aqueous solution. J Chem Soc Faraday Trans 2 Mol Chem Phys 78(7):989–994. https://doi.org/10.1039/F29827800989

    Article  Google Scholar 

  29. On C, Tanyi EK, Harrison E, Noginov MA (2017) Effect of molecular concentration on spectroscopic properties of poly(methylmethacrylate) thin films doped with rhodamine 6G dye. Opt Mater Express 7(12):4286–4295. https://doi.org/10.1364/OME.7.004286

    Article  CAS  Google Scholar 

  30. Jensen L, Schatz GC (2006) Resonance Raman scattering of Rhodamine 6G as calculated using time-dependent density functional theory. J Phys Chem A 110(18):5973–5977. https://doi.org/10.1021/jp0610867

    Article  CAS  Google Scholar 

  31. Sugiarto IT, Isnaeni, Putri KY (2017) Analysis of dual peak emission from Rhodamine 6G organic dyes using photoluminescence. J Phys 817:012047-1-012047-6

    Google Scholar 

  32. Deb SK (1972) Photoconductivity and photoluminescence in amorphous titanium dioxide. Solid State Commun 11(5):713–715. https://doi.org/10.1016/0038-1098(72)90492-9

    Article  CAS  Google Scholar 

  33. Tang H, Berger H, Schmid PE, Lévy F, Burri G (1993) Photoluminescence in TiO2 anatase single crystals. Solid State Commun 87(9):847–850. https://doi.org/10.1016/0038-1098(93)90427-O

    Article  CAS  Google Scholar 

  34. Abdullah SA, Sahdan MZ, Nafarizal N, Saim H, Bakri AS, Cik Rohaida CH, Adriyanto F, Sari Y (2018) Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering. J Phys 995:012067–1-012067-9

    Google Scholar 

  35. Wang M-S, Fan L-Z (2013) Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries. J Power Sour 244:570–574. https://doi.org/10.1016/j.jpowsour.2013.01.151

    Article  CAS  Google Scholar 

  36. Muaz AKM, Hashim U, Liu W-W, Ibrahim F, Thong KL, Mohktar MS (2014) Effect of isothermal annealing on structural, morphological, optical and electrical properties of N-type TiO2 thin films. IEEE Conference on Biomedical Engineering and Science (IECBES) Dec 8 (pp. 46–50). https://doi.org/10.1109/IECBES.2014.7047542

  37. Larbot A, Laaziz I, Marignan J, Quinson JF (1992) Porous texture of a titanium oxide gel: evolution as a function of medium used. J Noncrystal Solids 147-148:157–161. https://doi.org/10.1016/S0022-3093(05)80610-6

    Article  CAS  Google Scholar 

  38. Zhao ZW, Tay BK (2006) Study of nanocrystal TiO2 thin films by thermal annealing. J Electroceramics 16(4):489–493. https://doi.org/10.1007/s10832-006-9903-3

    Article  CAS  Google Scholar 

  39. Murashkevich AN, Lavitskaya AS, Barannikova TI, Zharskii IM (2008) Infrared absorption spectra and structure of TiO2-SiO2 composites. J Appl Spectr 75(5):730–734. https://doi.org/10.1007/s10812-008-9097-3

    Article  CAS  Google Scholar 

  40. Zhang RB, Gao L (2002) Synthesis of nanosized TiO2 by hydrolysis of alkoxide titanium in micelles. Key Eng Mater 224:573–576

    Article  Google Scholar 

  41. Yoko T, Kamiya K, Tanaka K (1990) Preparation of multiple oxide BaTiO3 fibres by the sol-gel method. J Mater Sci 25(9):3922–3929. https://doi.org/10.1007/BF00582461

    Article  CAS  Google Scholar 

  42. Govindasamy G, Murugasen P, Sagadevan S (2016) Investigations on the synthesis, optical and electrical properties of TiO2 thin films by chemical bath deposition (CBD) method. Mater Res 19(2):413–419. https://doi.org/10.1590/1980-5373-MR-2015-0411

    Article  Google Scholar 

  43. Iwamoto N, Tsunawaki Y, Fuji M, Hatfori T (1975) Raman spectra of K2O-SiO2 and K2O-SiO2-TiO2 glasses. J Noncrystal Solids 18(2):303–306. https://doi.org/10.1016/0022-3093(75)90029-0

    Article  CAS  Google Scholar 

  44. Burgos M, Langlet M (1999) The sol-gel transformation of TIPT coatings: a FTIR study. Thin Solid Films 349(1-2):19–23. https://doi.org/10.1016/S0040-6090(99)00139-X

    Article  CAS  Google Scholar 

  45. Doeuff S, Henry M, Sanchez C, Livage J (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Noncrystal Solids 89(1-2):206–216. https://doi.org/10.1016/S00223093(87)80333-2

    Article  CAS  Google Scholar 

  46. Djaoued Y, Taj R, Brüning R, Badilescu S, Ashrit PV, Bader G, Vo-Van T (2002) Study of the phase transition and the thermal nitridation of nanocrystalline sol-gel titania films. J Noncrystal Solids 297(1):55–66. https://doi.org/10.1016/S0022-3093(01)00918-8

    Article  CAS  Google Scholar 

  47. Harizanov O, Harizanova A (2000) Development and investigation of sol-gel solutions for the formation of TiO2 coatings. Solar Energy Mater Solar Cells 63(2):185–195. https://doi.org/10.1016/S0927-0248(00)00008-8

    Article  CAS  Google Scholar 

  48. Nam SH, Cho SJ, Boo JH (2012) Growth behavior of titanium dioxide thin films at different precursor temperatures. Nanoscale Res Lett 7(1):1–6. https://doi.org/10.1186/1556-276X-7-89

    Article  CAS  Google Scholar 

  49. Chen YF, Lee CY, Yeng MY, Chiu HT (2003) The effect of calcination temperature on the crystallinity of TiO2 nanopowders. J Cryst Growth 247(3-4):363–370. https://doi.org/10.1016/S0022-0248(02)01938-3

    Article  CAS  Google Scholar 

  50. Zhang JY, Boyd IW, O’sullivan BJ, Hurley PK, Kelly PV, Senateur JP (2002) Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. J NonCrystal Solids 303(1):134–138. https://doi.org/10.1016/S00223093(02)00973-0

    Article  CAS  Google Scholar 

  51. Barranco A, Bielmann M, Widmer R, Groening PA (2005) Plasma polymerization of rhodamine 6G thin films. Adv Eng Mater 7(5):396–400. https://doi.org/10.1002/adem.200500051

    Article  CAS  Google Scholar 

  52. Rao P, Rao V (2003) Luminiscent dye Rhodamine 6G doped monolithic and transparent TEOS silica xerogels and spectral properties. Sci Technol Adv Mater 4(2):121–129. https://doi.org/10.1016/S14686996(02)00042-6

    Article  CAS  Google Scholar 

  53. Wang L, Roitberg A, Meuse C, Gaigalas AK (2001) Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim Acta A Mol Biomol Spectr 57(9):1781–1791. https://doi.org/10.1016/S1386-1425(01)00408-5

    Article  CAS  Google Scholar 

  54. Ocaña M, Fornés V, Serna CJ (1992) A simple procedure for the preparation of spherical oxide particles by hydrolysis of aerosols. Ceramics Int 18(2):99–106. https://doi.org/10.1016/0272-8842(92)90038-F

    Article  Google Scholar 

  55. Majoube M, Henry M (1991) Fourier transform Raman and infrared and surface-enhanced Raman spectra for rhodamine 6G. Spectrochim Acta A Mol Spectr 47(9-10):1459–1466. https://doi.org/10.1016/05848539(91)80237-D

    Article  Google Scholar 

  56. Bumbrah GS, Sharma RM (2016) Raman Spectroscopy-Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci 6(3):209–215. https://doi.org/10.1016/j.ejfs.2015.06.001

    Article  Google Scholar 

  57. Schrader B (1995) Infrared and Raman spectroscopy: Methods and applications, VCH Publishers, Inc, New York, USA

  58. Chen S, Chu W, Huang YY, Liu X, Tong DG (2012) Preparation of porous nitrogen-doped titanium dioxide microspheres and a study of their photocatalytic, antibacterial and electrochemical activities. Mater Res Bullet 47(12):4514–4521. https://doi.org/10.1016/j.materresbull.2012.09.031

    Article  CAS  Google Scholar 

  59. Kadleıková M, Breza J, Veselý M (2001) Raman spectra of synthetic sapphire. Microelectronics J 32(12):955–958. https://doi.org/10.1016/S0026-2692(01)00087-8

    Article  Google Scholar 

  60. Rohatgi KK (1978) Fundamentals of photochemistry, Wiley Eastern Ltd, New Delhi

  61. Venkateswarlu P, George MC, Rao YV, Jagannath H, Chakrapani G, Miahnahri A (1987) Transient excited singlet state absorption in Rhodamine 6G. Pramana J Phys 28(1):59–71. https://doi.org/10.1007/BF02846809

    Article  CAS  Google Scholar 

  62. Bindhu CV, Harilal SS, Kurian A, Nampoori VP, Vallabhan CP (1998) Two and three photon absorption in rhodamine 6G methanol solutions using pulsed thermal lens technique. J Nonlinear Opt Phys Mater 7(04):531–538. https://doi.org/10.1142/S0218863598000387

    Article  CAS  Google Scholar 

  63. Innocenzi P, Kozuka H, Yoko T (1996) Dimer-to-monomer transformation of rhodamine 6G in sol-gel silica films. J Noncrystal Solids 201(1-2):26–36. https://doi.org/10.1016/0022-3093(95)00620-6

    Article  CAS  Google Scholar 

  64. Rohatgi KK (1968) Absorption spectra of the dimers of ionic dyes. J Mol Spectr 27(1-4):545–548. https://doi.org/10.1016/0022-2852(68)90061-1

    Article  CAS  Google Scholar 

  65. Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11(3-4):371–392. https://doi.org/10.1351/pac196511030371

    Article  CAS  Google Scholar 

  66. Valencia S, Marín JM, Restrepo G (2010) Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater Sci J 4(1):9–14. https://doi.org/10.2174/1874088X01004010009

    Article  CAS  Google Scholar 

  67. Gonçalves M, Pereira JC, Matos JC, Vasconcelos HC (2018) Photonic band gap and bactericide performance of amorphous sol-gel titania: an alternative to crystalline TiO2. Molecules 23(7):1677. https://doi.org/10.3390/molecules23071677

    Article  CAS  Google Scholar 

  68. Lakowicz JR, editor (2006) Principles of fluorescence spectroscopy, 3rd edn, Springer science & business media, LLC, USA

  69. Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48(10):1103–1111. https://doi.org/10.1016/S0045-6535(02)00201-1

    Article  CAS  Google Scholar 

  70. Zehentbauer FM, Moretto C, Stephen R, Thevar T, Gilchrist JR, Pokrajac D, Richard KL, Kiefer J (2014) Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects. Spectrochim Acta A Mol Biomol Spectr 121:147–151. https://doi.org/10.1016/j.saa.2013.10.062

    Article  CAS  Google Scholar 

  71. Lu Y, Penzkofer A (1986) Absorption behaviour of methanolic rhodamine 6G solutions at high concentration. Chem Phys 107(2-3):175–184. https://doi.org/10.1016/0301-0104(86)85002-9

    Article  CAS  Google Scholar 

  72. Verhoeven JW (1996) Glossary of terms used in photochemistry (IUPAC Recommendations 1996). Pure Appl Chem 68(12):2223–2286. https://doi.org/10.1351/pac199668122223

    Article  CAS  Google Scholar 

  73. Avnir D, Levy D, Reisfeld R (1984) The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G. J Phys Chem 88(24):5956–5959. https://doi.org/10.1021/j150668a042

    Article  CAS  Google Scholar 

  74. Sildos I, Suisalu A, Aarik J, Sekiya T, Kurita S (2000) Self-trapped exciton emission in crystalline anatase. J Lumin 87:290–292. https://doi.org/10.1016/S0022-2313(99)00318-X

    Article  Google Scholar 

  75. Abazović ND, Čomor MI, Dramićanin MD, Jovanović DJ, Ahrenkiel SP, Nedeljković JM (2006) Photoluminescence of anatase and rutile TiO2 particles. J Phys Chem B 110(50):25366–25370. https://doi.org/10.1021/jp064454f

    Article  CAS  Google Scholar 

  76. Abazović ND, Ruvarac-Bugarčić IA, Čomor MI, Bibić N, Ahrenkiel SP, Nedeljković JM (2008) Photon energy up-conversion in colloidal TiO2 nanorods. Opt Mater 30(7):1139–1144. https://doi.org/10.1016/j.optmat.2007.05.038

    Article  CAS  Google Scholar 

  77. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107(50):13871–13879. https://doi.org/10.1021/jp036158y

    Article  CAS  Google Scholar 

  78. De Haart LGJ, De Vries AJ, Blasse G (1985) On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells. J Solid State Chem 59(3):291–300. https://doi.org/10.1016/0022-4596(85)90296-8

    Article  Google Scholar 

  79. Chauhan R, Kumar A, Chaudhary RP (2012) Structural and photocatalytic studies of Mn doped TiO2 nanoparticles. Spectrochim Acta A Mol Biomol Spectr 98:256–264. https://doi.org/10.1016/j.saa.2012.08.009

    Article  CAS  Google Scholar 

  80. Iliev MN, Hadjiev VG, Litvinchuk AP (2013) Raman and infrared spectra of brookite (TiO2): experiment and theory. Vib Spectr 64:148–152. https://doi.org/10.1016/j.vibspec.2012.08.003

    Article  CAS  Google Scholar 

  81. Hu W, Li L, Li G, Tang C, Sun L (2009) High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Crys Growth Des 9(8):3676–3682. https://doi.org/10.1021/cg9004032

    Article  CAS  Google Scholar 

  82. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88(24):5935–5944. https://doi.org/10.1021/j150668a038

    Article  CAS  Google Scholar 

  83. Moran PD, Bowmaker GA, Cooney RP, Finnie KS, Bartlett JR, Woolfrey JL (1998) Vibrational spectra and molecular association of titanium tetraisopropoxide. Inorg Chem 37(11):2741–2748. https://doi.org/10.1021/ic9709436

    Article  CAS  Google Scholar 

  84. Yu X, Cai R, Song Y, Gao Q, Pan N, Wu M, Wang X (2017) Graphene/TiO2 hybrid layer for simultaneous detection and degradation by a one-step transfer and integration method. RSC Adv 7(25):14959–14965. https://doi.org/10.1039/C7RA00252A

    Article  CAS  Google Scholar 

  85. Watanabe H, Hayazawa N, Inouye Y, Kawata S (2005) DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. J Phys Chem 109(11):5012–5020. https://doi.org/10.1021/jp045771u

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majida A. Ameen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameen, M.A., Saeed, M.A. & Mahmood, A.S. Dip-coating sol–gel preparation and characterization of Rhodamine 6G-doped nanostructured TiO2 thin films on structural and spectroscopic properties. J Sol-Gel Sci Technol 101, 655–671 (2022). https://doi.org/10.1007/s10971-022-05738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05738-8

Keywords

Navigation