Skip to main content

Advertisement

Log in

History of ferroelectric materials prepared by sol-gel method

  • Review Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The history of sol-gel preparation of ferroelectric materials has been described. Around 1970, Schroeder’s review paper on solution-derived optical coating films, Mazdiyasni’s paper on fabrication of starting powders consisting of very fine, pure BaTiO3 crystals from metal alkoxides in solution, and Dislich’s paper on low temperature preparation of a multicomponent glass by hot-pressing gels derived from a mixture of metal alkoxides were published and opened the way to sol-gel preparation of ferroelectric materials. Fukushima et al. prepared BaTiO3 coatings by a sol-gel method from a mixture of Ba and Ti alkoxides in 1976. In the early and late 1980s, sol-gel preparation of ferroelectric materials continued. In these early works, researchers tried to find how to prepare crack-free and persistent coating films in which ferroelectric substances, such as BaTiO3 and PbTiO3 crystals, are precipitated. In the later 1980s, measurements of the ferroelectric properties of sol-gel materials aiming at improving the quality of the material, that is, substantial research on sol-gel-prepared materials started. Many researchers joined this area, reporting the results of measurements of ferroelectric properties of sol-gel prepared ferroelectric materials. In 2006, the Restrictions of Hazardous Substances (ROHS) was in force, and researchers tried to find lead-free ferroelectric materials and /or improve the quality of existing ferroelectric materials containing no lead, which replace, e.g., Pb(Zr,Ti)O3 known for its high performance. For this purpose, bismuth titanates were taken up, for instance. Around 2010, sol-gel preparation of multiferroic BiFeO3 emerged. A large number of papers concerning the sol-gel preparation of BiFeO3 and related materials were published in the Journal of Sol-Gel Science and Technology and other journals, owing to strong scientific interests and applications. Besides multiferroic materials, research efforts seeking better ferroelectric properties were actively continued by examining the effects of chemical composition on ferroelectric properties. For example, ferroelectric materials based on bismuth titanates and alkali-niobates were studied.

P-E hysteresis loops of BLT thin films pre-annealed at 350–500 °C and annealed at 750 °C (Singh SK, Ishiwara M (2007) J Sol-Gel Sci Technol 42: 231–238).

Highlights

  • History of sol-gel derived ferroelectric materials.

  • Description is based on original papers by individual authors.

  • Sol-gel preparation process is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brinker CJ, Scherer GW (1990) Sol-Gel Science. Academic Press, Boston

    Google Scholar 

  2. Sakka S (2005) The outline of applications of the sol-gel method. Handbook of Sol-Gel Science and Technology Kluwer Academic Publishers, Boston, 3 pp 3–26

    Google Scholar 

  3. Sakka S (2013) Sol-gel process and applications. In: Somiya S (Ed.) Handbook of Advanced Ceramics. Elsevier Inc, Amsterdam, Chapter 11.1.2 883–910

    Chapter  Google Scholar 

  4. Haertling GH (1999) Ferroelectric ceramics: History and technology. J Am Ceram Soc 82:797–818

    Article  CAS  Google Scholar 

  5. Chilibon I, Marat-Mendes JN (2012) Ferroelectric ceramics by sol-gel methods and applications: a review. J Sol-Gel Sci Technol 64:571–671

    Article  CAS  Google Scholar 

  6. Schroeder H (I969) Oxide layers deposited from inorganic solutions. Phys. Thin Films Vol 5, G. Haas and R. Thun Eds, Academic Press 87-141

  7. Mazdiyasni KS, Dollof RT, Smith JS (1969) Preparation of high purity submicron barium titanate powder. J Am Ceram Soc 52:523–526

    Article  CAS  Google Scholar 

  8. Dislich H (1971) New routes to multicomponent oxide glasses. Angewandte Chemie. Int Ed 10:363–370

    Article  CAS  Google Scholar 

  9. Schroeder H (1962) Properties and applications of oxide layers deposited on glass from organic solutions. Opt Acta 9:249–254

    Article  CAS  Google Scholar 

  10. Brown LM, Mazdiyasni KS (1972) Cold-pressing and low-temperature sintering of alkoxy-derived PLZT. J Am Ceram Soc 55:541–542

    Article  CAS  Google Scholar 

  11. Fukushima J, Kodaira K, Matusita T (1976) Preparation of BaTiO3 films by hydrolysis of organometallic compounds. Am Ceram Soc Bull 55:1064–1065

    CAS  Google Scholar 

  12. Yanovskaya MI, Turova NY, Turevskaya EP, Novoselova AV, Venetseva YN, Sagitova SI (1981) Inorg Mater 17:221–224

    Google Scholar 

  13. Sakka S, Kokubo T (1983) Preparation of glasses and ceramics for electrical use based on alkoxide and unidirectional solidification method. Jpn J Appl Phys 22(Suppl 22-2):3–7

    Article  CAS  Google Scholar 

  14. Blum JB, Gurkovich SR (1985) Sol-gel-derived PbTiO3. J Mater Sci 20:4479–4483

    Article  CAS  Google Scholar 

  15. Budd KD, Dey SK, Payne DA (1985) Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Brit Ceram Proc 36:107–121

    CAS  Google Scholar 

  16. Chen C, Ryder DF (1989) Synthesis and microstructure of highly oriented lead titanate thin films prepared by a sol-gel method. J Am Ceram Soc 72:1495–1498

    Article  CAS  Google Scholar 

  17. Partlow DP, Greggi J (1987) Properties and microstructure of thin LiNbO3 films prepared by a sol-gel process. J Mat Res 2:595–605

    Article  CAS  Google Scholar 

  18. Hirano S, Kato K (1988) Preparation of crystalline LiNbO3 films with preferred orientation by hydrolysis of metal alkoxides. Adv Ceram Mater 3:503–506

    Article  CAS  Google Scholar 

  19. Hirano S, Kato K (1989) Processing of crystalline Li (Nb,Ta)O3 films with preferred orientation through metal alkoxides. Mat Res Soc Symp Proc 155:181–190

    Article  CAS  Google Scholar 

  20. Fukushima J, Kodaira K, Matsushita T (1984) Preparation of ferroelectric PZT films by thermal decomposition of organometallic compounds. J Mater Sci 19:595–598

    Article  CAS  Google Scholar 

  21. Quek HM, Yan MF (1987) Sol-gel preparation and dielectric properties of lead iron niobate thin films. Ferroelectrics 74:95–108

    Article  CAS  Google Scholar 

  22. Vest RW, Xu J (1989) Preparation and properties of PLZT films from metallo-organic precursors. Ferroelectrics 93:21–29

    Article  CAS  Google Scholar 

  23. Melnick BM, Cuchiaro JD, McMillian LD, Paz de Araujo CA, Scott JF (1990) Process optimization and characterization of device worthy sol-gel based PZT for ferroelectric memories. Ferroelectrics 112:329–351

    Article  CAS  Google Scholar 

  24. Spierings GACM, Uleanaers MJE, Kampschoeer GLM, van Hal HAM, Larsen PK (1991) preparation and ferroelectric properties of PbZr0.53Ti0.47O3 thin films by spin coating and metalorganic decomposition. J Appl Phys 70:2290–2296

    Article  CAS  Google Scholar 

  25. Xu Y, Chen J, Xu R, Mackenzie JD (1990) The self-biased heterojunction effect of ferroelectric thin film on silicon substrate. J Appl Phys 67:2985–2991

    Article  CAS  Google Scholar 

  26. Kang J, Yoko T, Sakka S (1991) Preparation of lead-based perovskite films by sol-gel method and their properties. Jpn J Appl Phys 30(9B):2182–2185

    Article  CAS  Google Scholar 

  27. Vest RW, Zhu W (1991) Films of 60/40 PZT by the MOD process for memory applications. Ferroelectrics 119:61–75

    Article  CAS  Google Scholar 

  28. Teowee G, Boulton JM, Bommerbach WM, Uhlmann DR (1992) Second harmonic generation from PbTiO3-based ferroelectric thin films. J Non-Cryst Solids 147&148:799–802

    Article  Google Scholar 

  29. Uhlmann DR, Teowee G, Boulton JM, Motakef S, Lee SC (1992) Electrical and dielectric properties of chemically derived ferroelectric films. J Non-Cryst Solids 147/148:409–23

    Article  Google Scholar 

  30. Seifert A (1999) The influence of porosity on the electromechanical and pyroelectric properties of Ca-modified PbTiO3 thin films. J Sol-Gel Sci Technol 16:13–20

    Article  CAS  Google Scholar 

  31. Paik DS, Prasado Rao AV, Komarneni S (1997) Ba titanate and barium/strontium titanate thin films from hydroxide precursor: Preparation and ferroelectric behavior. J Sol-Gel Sci Tech 10:213–220

    Article  CAS  Google Scholar 

  32. Amanuma K, Hase T, Miyasaka Y (1995) Preparation and ferroelectric properties of SrBi2Ta2O9 thin films. Appl Phys Lett 66:221–223

    Article  CAS  Google Scholar 

  33. Chu PY, Jones RE, Zurcher P, Taylor DJ, Jiang B, Gillespie SJ, Lii YT, Kottke M, Fejes P, Chen W (1996) Characterization of spin-on ferroelectric SrBi2Ta2O9 thin film capacitors for ferroelectric random access memory application. J Mater Res 11:1065–1068

    Article  CAS  Google Scholar 

  34. Boyl TJ, Buchheit CD, Rodriguez MA, Al-Shareef HN, Hernandez BA (1996) Formation of SrBi2Ta2O9: Part I. Synthesis and characterization of a novel “sol-gel” solution for production of ferroelectric SrBi2Ta2O9 thin films. J Mater Res 11:2274–2281

    Article  Google Scholar 

  35. Kim SH, Kim DJ, Kingon AJ (1999) Ferroelectric properties of new chemical solution derived SBT thin films for non-volatile memory devices. J Sol-Gel Sci Technol 16:57–63

    Article  CAS  Google Scholar 

  36. Kessler VG, Hubert-Pfalzgraf LG, Daniele S (1994) Single-source precursors for BaTiO3: Synthesis and characterization of β-diketonate alkoxides of molecular structure of Ba2Ti2 (thd)4 (m3-OEt)8 (EtOH)2. Chem Mater 6:2336–2342

    Article  CAS  Google Scholar 

  37. Veith M, Mathur S, Lecerf N, Huch V, Decker T, Beck HP, Eiser W, Haberkorn R (2000) Sol-gel synthesis of nano-sized BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes. J Sol-Gel Sci Technol 17:145–158

    Article  CAS  Google Scholar 

  38. Kato K, Zheng C, Finder JM, Dey SK (1998) Sol-gel route to ferroelectric layer-structured perovskite SrBi2Ta2O9 and SrBi2Nb2O9 thin films. J Am Ceram Soc 81:1869–1875

    Article  CAS  Google Scholar 

  39. Kim YT, Hwang C, Chae HK, Lee YK, Lee WI, Dong Y, Yun H (2000) The sol-gel chemistry of ferroelectric SrBi2Ta2O9 thin layers. J Sol-Gel Sci Technol 19:301–304

    Article  CAS  Google Scholar 

  40. Fukui T (1998) Influence of preparation conditions on crystallization behavior of the complex alkoxide derived PbTiO3 powder. J Sol-Gel Sci Technol 11:31–41

    Article  CAS  Google Scholar 

  41. Zhang Q, Whatmore R, Vickers ME (1999) A comparison of the nanostructure of lead zirconate, lead titanate and lead zirconate titanate sols. J Sol-Gel Sci Technol 15:13–22

    Article  Google Scholar 

  42. Philips NJ, Calzada ML, Milne SJ (1992) Sol-gel derived lead titanate films. J Non-Cryst Solids 147-148:285–290

    Article  Google Scholar 

  43. Milne SJ, Kurchania R, Kennedy JD, Naksata M, Arscott S, Kaewchinda D, Sriprang N, Miles RE (1998) Triol sol-gel route for preparing PZT thin films. Ceram Trans 95:95–101

    CAS  Google Scholar 

  44. Naksata M, Brydson R, Milne SJ (2003) Properties of lead zirconate titanate thin films prepared using a triol sol-gel route. J Am Ceram Soc 86:1560–1566

    Article  CAS  Google Scholar 

  45. Kozuka H, Kajimura S (2000) Single-step dip coating of crack-free BaTiO3 films >1 μm thick: Effect pf poly (vinylpyrrolidone) on critical thickness. J Am Ceram Soc 83:1056–1062

    Article  CAS  Google Scholar 

  46. Kozuka H, Takenaka S (2002) Single-step deposition of gel-derived lead zirconate titanate films: critical thickness and gel film to ceramic film conversion. J Am Ceram Soc 85:2696–2702

    Article  CAS  Google Scholar 

  47. Sedlar M, Sayer M (1996) Structural and electrical properties of ferroelectric bismuth titanate thin films prepared by the sol-gel method. Ceram Int 22:241–247

    Article  CAS  Google Scholar 

  48. Dawley JT, Radspinner R, Zelinski BJJ, Uhlmann DR (2001) Sol-gel derived bismuth titanate thin films with c-axis orientation. J Sol-Gel Sci Technol 20:85–93

    Article  CAS  Google Scholar 

  49. Kato K, Suzuki K, Fu D, Nishizawa K, Miki K (2002) Platinum-assisted phase transition in bismuth based layer-structured ferroelectric CaBi4Ti4O15 thin films. Appl Phys Lett 81:3227–3229

    Article  CAS  Google Scholar 

  50. Sun H, Chen XB, Zhu JC, He JH, Qian YF, Fang H (2007) Notable enlargement of remnant polarization for fatigue-free SrBi4Ti4O15 thin films by La-substitution. J Sol-Gel Sci Technol 43:125–129

    Article  Google Scholar 

  51. Singh SK, Ishiwara H (2007) Site engineering in chemical-solution-deposited Bi3.25La0.75Ti3O12 thin films using Ce, Zr, Mn and Si atoms. J Sol-Gel Sci Technol 42:231–238

    Article  CAS  Google Scholar 

  52. Kim CY, Sekino T, Yamamoto Y, Niihara K (2005) The synthesis of lead-free ferroelectric Bi1/2Na1/2TiO3 thin film by solution-sol-gel method. J Sol-Gel Sci Technol 33:307–314

    Article  Google Scholar 

  53. Lai F, Li J (2007) Sol-gel processing of lead-free (Na, K) NbO3 ferroelectric films. J Sol-Gel Sci Technol 42:287–292

    Article  CAS  Google Scholar 

  54. Fu Z, Zhe R, Wu D, Li A (2009) Preparation of (1-x%)(Na0.5Bi0.5)TiO3-x%SrTiO3 (NBTSx) thin films by a sol-gel method for dielectric tunable applications. J Sol-Gel Sci Technol 49:29–34

    Article  Google Scholar 

  55. Yun KY, Noda M, Okuyama M, Saeki H, Tabata H, Saito K (2004) Structure and multiferroic properties of BiFeO3 thin films at room temperature. J Appl Phys 96:3399–3403

    Article  CAS  Google Scholar 

  56. Sakamoto W, Yamazaki H, Iwata A, Shimura T, Yogo T (2006) Synthesis and characterization of BiFeO3-PbTiO3 thin films through metalorganic precursor solution. Jpn J Appl Phys 45(No.9B):7315–7320

    Article  CAS  Google Scholar 

  57. Simões AZ, Cavalvante LS, Riccardi CS, Varela JA, Longo E (2007) Ferroelectric and dielectric behaviour of Bi0.92La0.08FeO3 multiferroic thin films prepared by soft chemistry route. J Sol-Gel Sci Technol 44:269–273

    Article  Google Scholar 

  58. Habouti S, Soltenbeck CH, Es-Souni M (2007) UV-assisted pyrolysis of solution deposited BiFeO3 multiferroic thin films. Effects on microstructure and functional properties. J Sol-Gel Sci Technol 42:257–263

    Article  CAS  Google Scholar 

  59. Wang X, Liu H, Yan B (2008) Enhanced ferroelectric properties of Ce-substituted BiFeO3 thin films prepared by sol-gel process. J Sol-Gel Sci Technol 47:124–127

    Article  CAS  Google Scholar 

  60. Liu H, Wang X (2008) Large electric polarization BiFeO3 film prepared via a simple sol-gel process. J Sol-Gel Sci Technol 47:154–157

    Article  CAS  Google Scholar 

  61. Sakamoto W, Iwata A, Moriya M, Yogo T (2009) Electrical and magnetic properties of Mn-doped 0.7BiFeO3-0.3PbTiO3 thin films prepared under various heating atmospheres. Mater Chem Phys 116:536–541

    Article  CAS  Google Scholar 

  62. Jo HK, Kim SS, Do D (2009) Fabrication and properties of xBiFeO3-(1-x) Bi4Ti3O12 system by sol-gel process. J Sol-Gel Sci Technol 49:336–340

    Article  CAS  Google Scholar 

  63. Battisha IK (2004) Visible up-conversion luminescence in Ho3+: BaTiO3 nano-crystals prepared by sol-gel technique. J Sol-Gel Sci Technol 30:163–172

    Article  CAS  Google Scholar 

  64. Battisha IK, Badr Y, Shash NM, El-Shaarawy MG, Darwish AGA (2010) Detection of up-conversion in nano-structure BaTiO3 codoped with Er3+ and Yb3+ ions. J Sol-Gel Sci Technol 53:543–50

    Article  CAS  Google Scholar 

  65. Garcia Hernandez M, Carillo Romo F, Garcia Murillo A, Jaramillo Vigueres D, Meneses Nava MA, Bartolo Pérez P, Chadeyron G (2010) The influence of polyvinyl-pyrrolidone on thickness and optical properties of BaTiO3: Er3+ thin films prepared by sol-gel method. J Sol-Gel Sci Technol 53:246–254

    Article  CAS  Google Scholar 

  66. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic Crystals, Princeton University Press, Princeton

  67. Kuwabara M (2004) Photonic crystals fabricated by sol-gel process. in Handbook of Sol-Gel Science and Technology Vol.III, S. Sakka ed., Kluwer Academic Publishers, Boston. Chap13

  68. Soten I, Miguez I, Yang SM, Petrov S, Coombs N, Tetreault N, Matsuura N, Ruda HE, Ozin GA (2002) Barium titanate inverted opals: synthesis, characterization and optical properties. Adv Funct Mater 12:71–77

    Article  CAS  Google Scholar 

  69. Li B, Zhou J, Li L, Wang XJ, Liu XH, Zi J (2003) Ferroelectric inverse opals with electrically tunable photonic band gap. Appl Phys Lett 83:4704–4706

    Article  CAS  Google Scholar 

  70. Guo HR, Gao Y, Li AD, Yan Z, Wu D (2008) Preparation and characterization of Pb0.56Sr0.44Zr0.52Ti0.48O3 inverse opal. J Sol-Gel Sci Technol 45:315–318

    Article  CAS  Google Scholar 

  71. Kobayashi Y, Nishioka A, Tanase T, Konno M (2004) Size effect on crystal structures of barium titanate nanoparticles prepared by a sol-gel method. J Sol-Gel Sci Technol 29:49–55

    Article  CAS  Google Scholar 

  72. Fernandez-Osorio AL, Vazquez-Olmos A, Mata-Zamora E, Saniger JM (2007) Preparation of free-standing Pb(Zr0.52Ti0.48)O3 nanoparticles by sol-gel method. J Sol-Gel Sci Technol 42:145–149

    Article  CAS  Google Scholar 

  73. Yuh J, Perez L, Sigmond WM, Nino JC (2007) Sol-gel based synthesis of complex oxide nanofibers. J Sol-Gel Sci Technol 42:323–329

    Article  CAS  Google Scholar 

  74. Lee DY, Lee KH, Lee MH, Cho NI, Kim BY (2010) Synthesis of electrospun BaSrTiO3/PVP nanofibers. J Sol-Gel Sci Technol 53:43–49

    Article  CAS  Google Scholar 

  75. Feng M, Wang W, Zhou Y, Jia D (2009) Synthesis and characterization of ferroelectric SrBi2Ta2O9 nanotube arrays. J Sol-Gel Sci Technol 52:120–123

    Article  CAS  Google Scholar 

  76. Yang H, Xian T, Wei ZQ, Dai JF, Jian JL, Feng WJ (2011) Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route. J Sol-Gel Sci Technol 58:238–243

    Article  CAS  Google Scholar 

  77. Pradhan SK, Roul BK (2012) Observation of enhanced room temperature multiferroicity in nanoparticles BiFeO3. J Sol-Gel Sci Technol 64:120–123

    Article  Google Scholar 

  78. Kuang DH, Tang P, Young SH, Zhong YL (2015) Effect of annealing temperatures on the structure and leakage mechanisms of BiFeO3 thin films prepared by sol-gel method. J Sol-Gel Sci Technol 73:410–416

    Article  CAS  Google Scholar 

  79. Shin HW, Son JY (2018) Ferroelectric BiFeO3 nanodots formed in non-crystallized BiFeO3 thin films via a local heating process using a heated atomic force microscope tip. J Sol-Gel Sci Technol 86:170–174

    Article  CAS  Google Scholar 

  80. Liu H, Liu R, Liu T (2011) Ferroelectricity of highly oriented (BiFeO3)1−x-(BaTiO3)x solid solution film by sol-gel method. J Sol-Gel Sci Technol 57:1–5

    Article  CAS  Google Scholar 

  81. Guo SJ, Yang CH, Jiang XM, Lv PP, Hu GD (2016) High ferroelectric performance of Bi0.9La0.1FeO3 thick film by optimizing preparation of precursor solution. J Sol-Gel Sci Technol 80:174–179

    Article  CAS  Google Scholar 

  82. Yang S, Zhang F, Xie X, Sun H, Zhang L, Fan S (2018) Effects of precursor concentration on electric properties of BiFe0.98Mn0.02O3 thin films prepared by sol-gel method. J Sol-Gel Sci Technol 85:158–165

    Article  CAS  Google Scholar 

  83. Liu YQ, Zhang J, Wu YH, Zhang YJ, Wei MB, Yang JH (2013) Enhancement of magnetization in Er doped BiFeO3 thin film. J Sol-Gel Sci Technol 67:1–7

    Article  CAS  Google Scholar 

  84. Sathiya Priya A, Banu IBS, Anwar MS, Hussain S (2016) Studies on the multiferroic properties of (Zr,Cu) co-doped BiFeO3 prepared by sol-gel method. J Sol-Gel Sci Technol 80:579–586

    Article  Google Scholar 

  85. Lakshmi SD, Banu IBS (2019) Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics. J Sol-Gel Sci Technol 89:713–721

    Article  CAS  Google Scholar 

  86. Fang X, Shen B, Zhai J (2011) Preparation, dielectric and ferroelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 thin films by a sol-gel process. J Sol-Gel Sci Technol 58:1–5

    Article  CAS  Google Scholar 

  87. Zhang WL, Tang MH, Xiong Y, Wang ZP, Xiao YG, Yan SA, Li Z, He J (2016) Improvement of nucleation and electrical properties of Bi3.15Nd0.85Ti2.99Mn0.01O12 thin films with an upper Bi4Ti3O12 buffer layer. J Sol-Gel Sci Technol 80:853–859

    Article  CAS  Google Scholar 

  88. Zhi C, Fang P, Xi Z, Long W, Li X (2019) Piezoelectric properties of sol-gel-derived (K0.16Na0.84)0.5Bi4.5Ti4O15 ceramics improved by a deft process optimization. J Sol-Gel Sci Technol 92:231–238

    Article  CAS  Google Scholar 

  89. Kang C, Park JH, Shen D, Ahn H, Park M, Kim DJ (2011) Growth and characterization of (K0.5Na0.5) NbO3 thin films by a sol-gel method. J Sol-Gel Sci Technol 58:85–90

    Article  CAS  Google Scholar 

  90. Fernández Solarte A, Pellegri N, Sancte O, Stachiotti MG (2013) Effect of Li- and Ta-doping on the ferroelectric properties of Na0.5K0.5NbO3 thin films prepared by a chelate route. J Sol-Gel Sci Technol 66:488–496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumio Sakka.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakka, S. History of ferroelectric materials prepared by sol-gel method. J Sol-Gel Sci Technol 101, 140–175 (2022). https://doi.org/10.1007/s10971-021-05712-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05712-w

Keywords

Navigation