Skip to main content
Log in

Synthesis of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 thin films by the chelate route

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A chemical solution deposition route based on the chelate approach is developed for the synthesis of Ba0.85Ca0.15Zr0.1Ti0.9O3 thin films. This lead-free composition is regarded as one of the most promising for the replacement of Pb(ZrxTi1−x)O3 in practical applications. The synthesis method replaces the highly toxic 2-methoxyethanol route, and offers the advantage of a simple and rapid preparation process. Homogeneous and crack-free thin films with thicknesses of 290 and 490 nm were prepared. Films annealed between 700 and 900 °C develop a single-phase perovskite structure. The electrical properties exhibit a weak frequency dependence for the dielectric constant, low dielectric loss, and ferroelectric behavior.

Highlights

  • A chelate route is developed for the synthesis of Ba0.85Ca0.15Zr0.1Ti0.9O3 thin films.

  • The route involves a rapid, simple and non-toxic reaction method.

  • A well-developed perovskite structure is obtained for films annealed above 700 °C.

  • The lead-free piezoelectric films exhibit good dielectric and ferroelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maerder M, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13:385–392

    Article  Google Scholar 

  2. Panda P (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062

    Article  CAS  Google Scholar 

  3. Rödel J, Jo W, Seifert K, Anton E, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  4. Leontsev S, Eitel R (2010) Progress in engineering high strain lead-free piezoelectric ceramics. Sci Technol Adv Mater 11:044302

    Article  Google Scholar 

  5. Xiao D (2011) Progresses and further considerations on the research of perovskite lead-free piezoelectric ceramics. J Adv Dielect 1:33–40

    Article  CAS  Google Scholar 

  6. Rödel J, Webber K, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35:1659–1681

    Article  Google Scholar 

  7. Gao J, Xue D, Liu W, Zhou C, Ren X (2017) Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 6:24

    Article  Google Scholar 

  8. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602

    Article  Google Scholar 

  9. Hao J, Bai W, Li W, Zhai J (2012) Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J Am Ceram Soc 95:1998–2006

    Article  CAS  Google Scholar 

  10. Mishra P, Kumar PS (2012) Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT–BCT 50/50 ceramics. J Alloy Comp 545:210–215

    Article  CAS  Google Scholar 

  11. Bai Y, Matousek A, Tofel P, Bijalwan V, Nan B, Hughes H, Button T(2015) (Ba,Ca)(Zr,Ti)O3 lead-free piezoelectric ceramics—the critical role of processing on properties. J Eur Ceram Soc 35:3445–3446

    Article  CAS  Google Scholar 

  12. Di Loreto A, Frattini A, Stachiotti MG(2017) Influence of post-calcination grinding on the properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free piezoceramics Mater Lett 191:69–72

    Article  Google Scholar 

  13. Bijalwana V, Tofela P, Erhartc J, Macaa K (2019) The complex evaluation of functional properties of nearly dense BCZT ceramics and their dependence on the grain size. Ceram Int 45:317–326

    Article  Google Scholar 

  14. Zhang Q, Cai W, Li Q, Gao R, Chen G, Deng X, Wang Z, Cao X, Fu C (2019) Enhanced piezoelectric response of (Ba,Ca)(Ti, Zr)O3 ceramics by super large grain size and construction of phase boundary. J Alloy Compd 794:542–552

    Article  CAS  Google Scholar 

  15. Mezzourh H, Belkhadir S, Mezzane D, Amjoud M, Choukri E, Lahmar A, Gagou Y, Kutnjak Z, El Marssi M (2021) Enhancing the dielectric, electrocaloric and energy storage properties of lead-freee Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics prepared via sol-gel process. Phys B Cond Matt 603:412760

    Article  CAS  Google Scholar 

  16. Hanania Z, Ablouhc E, Amjouda M, Mezzanea D, Fourcade S, Gounéb M (2018) Very-low temperature synthesis of pure and crystalline lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic. Ceram Int 44:10997–11000

    Article  Google Scholar 

  17. Lin Y, Wu G, Qin N, Bao D (2012) Structure, dielectric, ferroelectric, and optical properties of (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 thin films prepared by sol–gel method. Thin Solid Films 520:2800–2804

    Article  CAS  Google Scholar 

  18. Lin Y, Qin N, Wu G, Sa T, Bao D (2012) Dielectric relaxor behaviors and tunability of (1−x)Ba(Zr0.2 Ti0.8)O3 –x(Ba0.7 Ca0.3)TiO3 thin films fabricated by sol–gel method. Appl Phys A 109:743–749

    Article  CAS  Google Scholar 

  19. Chia QG, Zhu HF, Xu JC, Wang X, Lin JQ, Sun Z, Chen Y, Lei QQ (2013) Microstructures and electrical properties of 0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.2Ti0.8)O3 thin films prepared by a sol–gel route. Ceram Int 39:8195–8198

    Article  Google Scholar 

  20. Wang H, Xu J, Ma C, Xu F, Wang L, Bian L, Chang A (2014) Spectroscopic ellipsometry study of 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 ferroelectric thin films. J Alloy Compd 615:526–530

    Article  CAS  Google Scholar 

  21. Jiang X, Wang D, Sun M, Zheng N, Jia S, Liu H, Zhang D, Li W (2017) Microstructure and electric properties of BCZT thin films with seed layers. RSC Adv 7:49962–49968

    Article  CAS  Google Scholar 

  22. Reddy SR, Prasad VVB, Bysakh S, Shanker V, Hebalkar N, Roy SK (2019) Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere. J Mater Chem C 7:7073–7082

    Article  CAS  Google Scholar 

  23. Ion V, Craciun F, Scarisoreanu ND et al. (2018) Impact of thickness variation on structural, dielectric and piezoelectric properties of (Ba,Ca)(Ti,Zr)O3 epitaxial thin films. Sci Rep. 8:2056. https://doi.org/10.1038/s41598-018-20149-y

    Article  CAS  Google Scholar 

  24. Schwartz RW (1997) Chemical solution deposition of perovskite thin films. Chem Mater 9:2325–2340

    Article  CAS  Google Scholar 

  25. Takahashi T, Osugi A, Arafuka T, Ohya T, Ban T, Ohya Y (2000) Development of new modifiers for titanium alkoxide-based sol-gel process. J Sol-Gel Sci Technol 17:227

    Article  CAS  Google Scholar 

  26. Ohya T, Kabata M, Ban T, Ohya Y, Takahashi Y (2002) Effect of α-hydroxyketones as chelate ligands on dip-coating of zirconia thin films. J Sol-Gel Sci Technol 25:43

    Article  CAS  Google Scholar 

  27. Machado R, Santiago ML, Stachiotti MG, Frattini A, Pellegri N, Bolmaro R, de Sanctis O (2008) Effects of acetoin as chelating agent in the preparation of SrBi2Ta2O9 thin films from non-hydrolyzing precursors. J Sol-Gel Sci Technol 48:294–302

    Article  CAS  Google Scholar 

  28. Imhoff L, Barolin S, Pellegri N, Stachiotti MG (2017) Chelate route for the synthesis of PbZrxTi1-xO3 thin films. J Sol Gel Sci Technol 83:375–381

    Article  CAS  Google Scholar 

  29. Imhoff L, Barolin S, Pellegri N, Stachiotti MG (2019) Sol-Gel synthesis and characterization of 0.5Pb(Zr0.52Ti0.48)O3-0.5Pb(Fe0.5Nb0.5)O3 thin films. Ferroelectrics 455:1–9

    Article  Google Scholar 

  30. Barbato PS, Casuscelli V, Aprea P, Scaldaferri R, Caputo D (2021) Optimization of the production process of BZT–BCT sol–gel thin films obtained from a highly stable and green precursor solution. Mater Manuf Process. https://doi.org/10.1080/10426914.2021.1926495

  31. Li B, Wang X, Li L (2002) Synthesis and sintering behavior of BaTiO3 prepared by different chemical methods. Mater Chem Phys 78:292–298

    Article  CAS  Google Scholar 

  32. Pontes FM, Leite ER, Longo E, Varela JA, Araujo EB, Eiras JA (2000) Effects of the postannealing atmosphere on the dielectric properties of (Ba, Sr)TiO3 capacitors: evidence of an interfacial space charge layer. Appl Phys Lett 76:2433

    Article  CAS  Google Scholar 

  33. Thomas R, Varadan VK, Komerneni S, Dube DC (2001) Diffuse phase transition, electrical conduction, and low temperature dielectric properties of sol-gel derived ferroelectric barium titanate thin films. J Appl Phys 90:1480–1488

    Article  CAS  Google Scholar 

  34. Jain M, Majumder SB, Katiyar RS, Miranda FA, Keuls FWV (2003) Improvement in electrical characteristics of graded manganese doped barium strontium titanate thin films. Appl Phys Lett 82:1911

    Article  CAS  Google Scholar 

  35. Shi M, Zhong J, Zuo R, Xu Y, Wang L, Su H, Gu C (2013) Effect of annealing processes on the structural and electrical properties of the lead-free thin films of (Ba0.9Ca0.1)(Ti0.9Zr0.1)O3. J Alloy Compd 562:116–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marcelo Esquivel from Centro Atómico Bariloche (CNEA) for the SEM images. The authors acknowledge financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario. We also acknowledge the financial support of H2020-MSCA-RISE-2020 MELON Grant No. 872631. MGS thanks support from CIUNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Stachiotti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamana, N., Pellegri, N. & Stachiotti, M.G. Synthesis of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 thin films by the chelate route. J Sol-Gel Sci Technol 102, 229–235 (2022). https://doi.org/10.1007/s10971-021-05706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05706-8

Keywords

Navigation