Skip to main content
Log in

Colloidal stability and degradability of silica nanoparticles in biological fluids: a review

  • Invited Review: Sol–gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This review shows the most common and promising strategies to generate colloidally stable silica nanoparticles (NPs) in simulated biological fluids and sheds light on the latest advances in producing degradable silica-based structures. Silica NPs can be synthesized in a wide variety of morphologies, porosity levels, and sizes. This versatility makes silica NPs one of the most promising nano-platforms for imaging and disease treatment. Nonetheless, biological barriers can decrease the success of translating them for therapeutic applications since the media composition can induce their colloidal stability loss. It can, consequently, lead to the NPs aggregation and affect their degradation profile. The interplay between NPs aggregation and degradation has been scarcely explored in the literature when biological fluids are seriously taken into account. Herein we discuss the theory behind the colloidal stability of silica NPs, the processes leading to their aggregation, and some strategies to overcome this issue (mainly focused on NPs surface functionalization). Furthermore, we addressed the main issues that affect the degradability of NPs in biological fluids, and explored some strategies, such as chemical surface modification, which are able to tune these degradation-driven profiles. Thus, the understanding of the silica NPs behavior in body fluids is essential for the approval of nanomedicines and, therefore, more investigations concerning the dynamics, thermodynamics, biological response, and structural parameters of silica-based NPs are of utmost importance.

Highlights

  • We discuss the challenges faced by silica-based nanoparticles in biological media.

  • We address relevant strategies to avoid aggregation of silica nanoparticles in biological fluids.

  • We present the impact of media and particle characteristics on silica nanoparticles degradation.

  • We discuss strategies used to tune silica nanoparticle degradability in the biological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang P, Chen Y, Lin H et al. (2017) Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials 125:23–37. https://doi.org/10.1016/j.biomaterials.2017.02.018

    Article  CAS  Google Scholar 

  2. Croissant JG, Fatieiev Y, Almalik A, Khashab NM (2018) Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Health Mater 7:1700831. https://doi.org/10.1002/adhm.201700831

    Article  CAS  Google Scholar 

  3. Maggini L, Cabrera I, Ruiz-Carretero A et al. (2016) Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8:7240–7247. https://doi.org/10.1039/C5NR09112H

    Article  CAS  Google Scholar 

  4. Tayama M, Inose T, Yamauchi N et al. (2019) Fabrication and dual-modal imaging properties of quantum dot/silica core-shell particles with immobilized single-nanometer-sized gold nanoparticles. Colloids Surf A Physicochem Eng Asp 574:162–170. https://doi.org/10.1016/j.colsurfa.2019.04.055

    Article  CAS  Google Scholar 

  5. Lei Q, Guo J, Noureddine A et al. (2020) Sol–gel‐based advanced porous silica materials for biomedical applications. Adv Funct Mater 30:1909539. https://doi.org/10.1002/adfm.201909539

    Article  CAS  Google Scholar 

  6. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  7. Bogush GH, Tracy MA, Zukoski CF (1988) Preparation of monodisperse silica particles: control of size and mass fraction. J Non Cryst Solids 104:95–106. https://doi.org/10.1016/0022-3093(88)90187-1

    Article  CAS  Google Scholar 

  8. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69:132–158. https://doi.org/10.1016/j.surfrep.2014.07.001

    Article  CAS  Google Scholar 

  9. Beck JS, Vartuli JC, Roth WJ et al. (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  10. Kresge CT, Leonowicz ME, Roth WJ et al. (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  11. Tarn D, Ashley CE, Xue M et al. (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46:792–801. https://doi.org/10.1021/ar3000986

    Article  CAS  Google Scholar 

  12. Tissot I, Reymond JP, Lefebvre F, Bourgeat-Lami E (2002) SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles. Chem Mater 14:1325–1331. https://doi.org/10.1021/cm0112441

    Article  CAS  Google Scholar 

  13. Chen JF, Ding HM, Wang JX, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25:723–727. https://doi.org/10.1016/S0142-9612(03)00566-0

    Article  CAS  Google Scholar 

  14. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. John Wiley & Sons

  15. Brinker CJ, Scherer GW (1990) Sol-gel science. Elsevier

  16. Bergna HE, Roberts WO (2006) Colloidal silica: fundamentals and applications. surfactant science series. CRC Press, Taylor and Francis Group, LLC

  17. Zou Y, Huang B, Cao L et al. (2021) Tailored mesoporous inorganic biomaterials: assembly, functionalization, and drug delivery engineering. Adv Mater 33:2005215. https://doi.org/10.1002/adma.202005215

    Article  CAS  Google Scholar 

  18. Li Z, Mu Y, Peng C et al. (2021) Understanding the mechanisms of silica nanoparticles for nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 13:1–23. https://doi.org/10.1002/wnan.1658

    Article  Google Scholar 

  19. Jiang S, Prozeller D, Pereira J et al. (2020) Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale 12:2626–2637. https://doi.org/10.1039/c9nr09879h

    Article  CAS  Google Scholar 

  20. Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H (2019) In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release 311–312:1–15. https://doi.org/10.1016/j.jconrel.2019.08.028

    Article  CAS  Google Scholar 

  21. Zhu X, Vo C, Taylor M, Smith BR (2019) Non-spherical micro- and nanoparticles in nanomedicine. Mater Horiz 6:1094–1121. https://doi.org/10.1039/C8MH01527A

    Article  CAS  Google Scholar 

  22. Picco AS, Mondo GB, Ferreira LF et al. (2021) Protein corona meets freeze-drying: overcoming the challenges of colloidal stability, toxicity, and opsonin adsorption. Nanoscale 13:753–762. https://doi.org/10.1039/d0nr06040b

    Article  CAS  Google Scholar 

  23. Capeletti LB, Oliveira JFA, Loiola LMD et al. (2019) Gram‐negative bacteria targeting mediated by carbohydrate–carbohydrate interactions induced by surface‐modified nanoparticles. Adv Funct Mater 29:1904216. https://doi.org/10.1002/adfm.201904216

    Article  CAS  Google Scholar 

  24. Lee JE, Lee N, Kim T et al. (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902. https://doi.org/10.1021/ar2000259

    Article  CAS  Google Scholar 

  25. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22:1182–1195. https://doi.org/10.1002/adma.200901263

    Article  CAS  Google Scholar 

  26. Rosen JE, Gu FX (2011) Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface. Langmuir 27:10507–10513. https://doi.org/10.1021/la201940r

    Article  CAS  Google Scholar 

  27. Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29:1–51. https://doi.org/10.1002/adma.201604634

    Article  CAS  Google Scholar 

  28. Ehrlich H, Demadis KD, Pokrovsky OS, Koutsoukos PG (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110:4656–4689. https://doi.org/10.1021/cr900334y

    Article  CAS  Google Scholar 

  29. Bobo D, Robinson KJ, Islam J et al. (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387. https://doi.org/10.1007/s11095-016-1958-5

    Article  CAS  Google Scholar 

  30. Lo TH, Wu ZY, Chen SY et al. (2021) Curcumin-loaded mesoporous silica nanoparticles with dual-imaging and temperature control inhibits the infection of Zika virus. Microporous Mesoporous Mater 314:110886. https://doi.org/10.1016/j.micromeso.2021.110886

    Article  CAS  Google Scholar 

  31. Carvalho GC, Sábio RM, de Cássia Ribeiro T, et al. (2020) Highlights in mesoporous silica nanoparticles as a multifunctional controlled drug delivery nanoplatform for infectious diseases treatment. Pharm Res 37:191. https://doi.org/10.1007/s11095-020-02917-6

  32. Ni D, Bu W, Ehlerding EB et al. (2017) Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 46:7438–7468. https://doi.org/10.1039/c7cs00316a

    Article  CAS  Google Scholar 

  33. Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. AAPS J 17:1041–1054. https://doi.org/10.1208/s12248-015-9780-2

    Article  CAS  Google Scholar 

  34. Giri K, Kuschnerus I, Ruan J, Garcia‐Bennett AE (2019) Influence of a protein corona on the oral pharmacokinetics of testosterone released from mesoporous silica. Adv Ther 3:1900110. https://doi.org/10.1002/adtp.201900110

    Article  CAS  Google Scholar 

  35. Moore TL, Rodriguez-Lorenzo L, Hirsch V et al. (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305. https://doi.org/10.1039/c4cs00487f

    Article  CAS  Google Scholar 

  36. Tenzer S, Docter D, Kuharev J et al. (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781. https://doi.org/10.1038/nnano.2013.181

    Article  CAS  Google Scholar 

  37. Graf C, Gao Q, Schütz I et al. (2012) Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir 28:7598–613. https://doi.org/10.1021/la204913t

    Article  CAS  Google Scholar 

  38. Hao N, Liu H, Li L et al. (2012) In vitro degradation behavior of silica nanoparticles under physiological conditions. J Nanosci Nanotechnol 12:6346–6354. https://doi.org/10.1166/jnn.2012.6199

    Article  CAS  Google Scholar 

  39. Mortensen NP, Hurst GB, Wang W et al. (2013) Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 5:6372–6380. https://doi.org/10.1039/c3nr33280b

    Article  CAS  Google Scholar 

  40. Cauda V, Argyo C, Bein T (2010) Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20:8693–8699. https://doi.org/10.1039/c0jm01390k

    Article  CAS  Google Scholar 

  41. Khung YL, Narducci D (2015) Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting. Adv Colloid Interface Sci 226:166–186. https://doi.org/10.1016/j.cis.2015.10.009

    Article  CAS  Google Scholar 

  42. Tiemblo P, García N, Hoyos M et al. (2015) Organic modification of hydroxylated nanoparticles: silica, sepiolite, and polysaccharides. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer International Publishing, Cham, p 1–35

    Google Scholar 

  43. Estephan ZG, Schlenoff PS, Schlenoff JB (2011) Zwitteration as an alternative to PEGylation. Langmuir 27:6794–6800. https://doi.org/10.1021/la200227b

    Article  CAS  Google Scholar 

  44. Li Y, Hu X, Ding D et al. (2017) In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules. Nat Commun 8:1–10. https://doi.org/10.1038/ncomms15653

    Article  CAS  Google Scholar 

  45. de Oliveira JFA, da Silva RF, Ribeiro IRS et al. (2020) Selective targeting of lymphoma cells by monoclonal antibody grafted onto Zwitterionic-functionalized nanoparticles. Part Part Syst Charact 37:1–5. https://doi.org/10.1002/ppsc.201900446

    Article  CAS  Google Scholar 

  46. Cheng W, Nie J, Xu L et al. (2017) pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces 9:18462–18473. https://doi.org/10.1021/acsami.7b02457

    Article  CAS  Google Scholar 

  47. de Oliveira LF, Bouchmella K, Gonçalves KDA et al. (2016) Functionalized silica nanoparticles as an alternative platform for targeted drug-delivery of water insoluble drugs. Langmuir 32:3217–3225. https://doi.org/10.1021/acs.langmuir.6b00214

    Article  CAS  Google Scholar 

  48. Del Pino P, Pelaz B, Zhang Q et al. (2014) Protein corona formation around nanoparticles – from the past to the future. Mater Horiz 1:301–313. https://doi.org/10.1039/C3MH00106G

    Article  Google Scholar 

  49. Nel AE, Mädler L, Velegol D et al. (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  Google Scholar 

  50. Schneid AC, Silveira CP, Galdino FE et al. (2020) Colloidal stability and redispersibility of mesoporous silica nanoparticles in biological media. Langmuir 36:11442–11449. https://doi.org/10.1021/acs.langmuir.0c01571

  51. Braun K, Pochert A, Beck M et al. (2016) Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. J Sol-Gel Sci Technol 79:319–327. https://doi.org/10.1007/s10971-016-4053-9

    Article  CAS  Google Scholar 

  52. Wohlleben W, Driessen MD, Raesch S et al. (2016) Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity. Nanotoxicology 10:970–980. https://doi.org/10.3109/17435390.2016.1155671

    Article  CAS  Google Scholar 

  53. Francia V, Yang K, Deville S et al. (2019) Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 13:11107–11121. https://doi.org/10.1021/acsnano.9b03824

    Article  CAS  Google Scholar 

  54. Auría-Soro C, Nesma T, Juanes-Velasco P, et al. (2019) Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 9:1365. https://doi.org/10.3390/nano9101365

  55. Israelachvili J (2013) Intermolecular and surface forces, 3rd edn. Academic Press

  56. Boström M, Deniz V, Franks GV, Ninham BW (2006) Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions. Adv Colloid Interface Sci 123–126:5–15. https://doi.org/10.1016/j.cis.2006.05.001

    Article  CAS  Google Scholar 

  57. Tadros T (2011) General principles of colloid stability and the role of surface forces. In: Tadros T (ed.) Colloid stability. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p 1–22

    Google Scholar 

  58. Parsegian VA (2005) Van Der Waals forces: a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press

  59. Bergström L (1997) Hamaker constants of inorganic materials. Adv Colloid Interface Sci 70:125–169. https://doi.org/10.1007/978-3-642-72624-8_11

    Article  Google Scholar 

  60. Kontogeorgis GM, Kiil S (2016) Introduction to applied colloid and surface chemistry. John Wiley & Sons, Ltd, Chichester, UK

    Book  Google Scholar 

  61. Parks GA, de Bruyn PL (1962) The zero point of charge of oxides. J Phys Chem 66:967–973. https://doi.org/10.1021/j100812a002

    Article  CAS  Google Scholar 

  62. Adamson A, Gast A (1997) Physical chemistry of surfaces, 6th edn. John Wiley & Sons, Inc.

  63. Kosmulski M (2009) Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interface Sci 152:14–25. https://doi.org/10.1016/j.cis.2009.08.003

    Article  CAS  Google Scholar 

  64. Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198. https://doi.org/10.1021/cr60234a002

    Article  CAS  Google Scholar 

  65. Kosmulski M (2016) Isoelectric points and points of zero charge of metal (hydr) oxides: 50 years after Parks’ review. Adv Colloid Interface Sci 238:1–61. https://doi.org/10.1016/j.cis.2016.10.005

    Article  CAS  Google Scholar 

  66. Currie EPK, Norde W, Cohen Stuart MAC (2003) Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Adv Colloid Interface Sci 100–102:205–265. https://doi.org/10.1016/S0001-8686(02)00061-1

    Article  CAS  Google Scholar 

  67. Bharti B, Meissner J, Klapp SHL, Findenegg GH (2014) Bridging interactions of proteins with silica nanoparticles: the influence of pH, ionic strength and protein concentration. Soft Matter 10:718–28. https://doi.org/10.1039/c3sm52401a

    Article  CAS  Google Scholar 

  68. Grasso D, Subramaniam K, Butkus M et al. (2002) A review of non-DLVO interactions in environmental colloidal systems. Rev Environ Sci Bio/Technol 1:17–38. https://doi.org/10.1023/A:1015146710500

    Article  CAS  Google Scholar 

  69. Ninham BW (1999) On progress in forces since the DLVO theory. Adv Colloid Interface Sci 83:1–17. https://doi.org/10.1016/S0001-8686(99)00008-1

    Article  CAS  Google Scholar 

  70. Sonnefeld J, Löbbus M, Vogelsberger W (2001) Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements. Colloids Surf A Physicochem Eng Asp 195:215–225. https://doi.org/10.1016/S0927-7757(01)00845-7

    Article  CAS  Google Scholar 

  71. Hiemstra T, De Wit JC, Van Riemsdijk W (1989) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. J Colloid Interface Sci 133:105–117. https://doi.org/10.1016/0021-9797(89)90285-3

    Article  CAS  Google Scholar 

  72. Sverjensky DA (2005) Prediction of surface charge on oxides in salt solutions: revisions for 1:1 (M+L-) electrolytes. Geochim Cosmochim Acta 69:225–257. https://doi.org/10.1016/j.gca.2004.05.040

    Article  CAS  Google Scholar 

  73. Leroy P, Devau N, Revil A, Bizi M (2013) Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles. J Colloid Interface Sci 410:81–93. https://doi.org/10.1016/j.jcis.2013.08.012

    Article  CAS  Google Scholar 

  74. Allen LH, Matijevíc E, Meites L (1971) Exchange of Na+ for the silanolic protons of silica. J Inorg Nucl Chem 33:1293–1299. https://doi.org/10.1016/0022-1902(71)80423-2

    Article  CAS  Google Scholar 

  75. Ong S, Zhao X, Eisenthal KB (1992) Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem Phys Lett 191:327–335. https://doi.org/10.1016/0009-2614(92)85309-X

    Article  CAS  Google Scholar 

  76. Pfeiffer-Laplaud M, Costa D, Tielens F et al. (2015) Bimodal acidity at the amorphous silica/water interface. J Phys Chem C 119:27354–27362. https://doi.org/10.1021/acs.jpcc.5b02854

    Article  CAS  Google Scholar 

  77. I-Ssuer C, Maciel GE (1996) Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics. J Am Chem Soc 118:401–406. https://doi.org/10.1021/ja951550d

    Article  Google Scholar 

  78. West R, Whatley LS, Lake KJ (1961) Hydrogen bonding studies. V. The relative basicities of ethers, alkoxysilanes and siloxanes and the nature of the silicon-oxygen bond. J Am Chem Soc 83:761–764. https://doi.org/10.1021/ja01465a001

    Article  CAS  Google Scholar 

  79. Depasse J, Watillon A (1970) The stability of amorphous colloidal silica. J Colloid Interface Sci 33:430–438. https://doi.org/10.1016/0021-9797(70)90235-3

    Article  Google Scholar 

  80. Allen LH, Matijević E (1969) Stability of colloidal silica. J Colloid Interface Sci 31:287–296. https://doi.org/10.1016/0021-9797(69)90172-6

    Article  CAS  Google Scholar 

  81. Vigil G, Xu Z, Steinberg S, Israelachvili J (1994) Interactions of silica surfaces. J Colloid Interface Sci 165:367–385. https://doi.org/10.1006/jcis.1994.1242

    Article  CAS  Google Scholar 

  82. Adler JJ, Rabinovich YI, Moudgil BM (2001) Origins of the Non-DLVO force between glass surfaces in aqueous solution. J Colloid Interface Sci 237:249–258. https://doi.org/10.1006/jcis.2001.7466

    Article  CAS  Google Scholar 

  83. Zhmud BV, Meurk A, Bergström L (1998) Evaluation of surface ionization parameters from AFM data. J Colloid Interface Sci 207:332–343. https://doi.org/10.1006/jcis.1998.5783

    Article  CAS  Google Scholar 

  84. Schrader AM, Monroe JI, Sheil R et al. (2018) Surface chemical heterogeneity modulates silica surface hydration. Proc Natl Acad Sci USA 115:2890–2895. https://doi.org/10.1073/pnas.1722263115

    Article  CAS  Google Scholar 

  85. He L, Hu Y, Wang M, Yin Y (2012) Determination of solvation layer thickness by a magnetophotonic approach. ACS Nano 6:4196–4202. https://doi.org/10.1021/nn3007288

    Article  CAS  Google Scholar 

  86. Kobayashi M, Skarba M, Galletto P et al. (2005) Effects of heat treatment on the aggregation and charging of Stöber-type silica. J Colloid Interface Sci 292:139–147. https://doi.org/10.1016/j.jcis.2005.05.093

    Article  CAS  Google Scholar 

  87. Harding RD (1971) Stability of silica dispersions. J Colloid Interface Sci 35:172–174. https://doi.org/10.1016/0021-9797(71)90203-7

    Article  CAS  Google Scholar 

  88. Drescher D, Orts-Gil G, Laube G et al. (2011) Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal Bioanal Chem 400:1367–1373. https://doi.org/10.1007/s00216-011-4893-7

    Article  CAS  Google Scholar 

  89. Lesniak A, Fenaroli F, Monopoli MP et al. (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857. https://doi.org/10.1021/nn300223w

    Article  CAS  Google Scholar 

  90. Izak-Nau E, Voetz M, Eiden S et al. (2013) Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation. Part Fibre Toxicol 10:56. https://doi.org/10.1186/1743-8977-10-56

    Article  Google Scholar 

  91. Docter D, Bantz C, Westmeier D et al. (2014) The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles. Beilstein J Nanotechnol 5:1380–1392. https://doi.org/10.3762/bjnano.5.151

    Article  CAS  Google Scholar 

  92. Halamoda-kenzaoui B, Ceridono M, Colpo P et al. (2015) Dispersion behaviour of silica nanoparticles in biological media and its influence on cellular uptake. PLoS One 10:e0141593. https://doi.org/10.1371/journal.pone.0141593

    Article  CAS  Google Scholar 

  93. Saikia J, Yazdimamaghani M, Hadipour Moghaddam SP, Ghandehari H (2016) Differential protein adsorption and cellular uptake of silica nanoparticles based on size and porosity. ACS Appl Mater Interfaces 8:34820–34832. https://doi.org/10.1021/acsami.6b09950

    Article  CAS  Google Scholar 

  94. Gollwitzer C, Bartczak D, Goenaga-Infante H et al. (2016) A comparison of techniques for size measurement of nanoparticles in cell culture medium. Anal Methods 8:5272–5282. https://doi.org/10.1039/C6AY00419A

    Article  CAS  Google Scholar 

  95. Bharti B, Meissner J, Findenegg GH (2011) Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir 27:9823–9833. https://doi.org/10.1021/la201898v

    Article  CAS  Google Scholar 

  96. Kumar S, Aswal VK, Kohlbrecher J (2011) SANS and UV-vis spectroscopy studies of resultant structure from lysozyme adsorption on silica nanoparticles. Langmuir 27:10167–10173. https://doi.org/10.1021/la201291k

    Article  CAS  Google Scholar 

  97. Orts-Gil G, Natte K, Thiermann R et al. (2013) On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system. Colloids Surf B Biointerfaces 108:110–119. https://doi.org/10.1016/j.colsurfb.2013.02.027

    Article  CAS  Google Scholar 

  98. Galdino FE, Picco AS, Sforca ML et al. (2020) Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles. Colloids Surf B Biointerfaces 186:110677. https://doi.org/10.1016/j.colsurfb.2019.110677

    Article  CAS  Google Scholar 

  99. Monopoli MP, Walczyk D, Campbell A et al. (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534. https://doi.org/10.1021/ja107583h

    Article  CAS  Google Scholar 

  100. Lara S, Perez-Potti A, Herda LM et al. (2018) Differential recognition of nanoparticle protein corona and modified low-density lipoprotein by macrophage receptor with collagenous structure. ACS Nano 12:4930–4937. https://doi.org/10.1021/acsnano.8b02014

    Article  CAS  Google Scholar 

  101. Yamamoto E, Kuroda K (2016) Colloidal mesoporous silica nanoparticles. Bull Chem Soc Jpn 89:501–539. https://doi.org/10.1246/bcsj.20150420

    Article  CAS  Google Scholar 

  102. Lin Y, Abadeer N, Haynes CL (2011) Stability of small mesoporous silica nanoparticles in biological media. Chem Commun 47:532–534. https://doi.org/10.1039/C0CC02923H

    Article  CAS  Google Scholar 

  103. Rascol E, Daurat M, Da Silva A et al. (2017) Biological fate of Fe3O4 core-shell mesoporous silica nanoparticles depending on particle surface chemistry. Nanomaterials 7:162. https://doi.org/10.3390/nano7070162

    Article  CAS  Google Scholar 

  104. Lin Y, Abadeer N, Hurley KR, Haynes CL (2011) Ultrastable, redispersible, small, and highly organomodified mesoporous silica nanotherapeutics. J Am Chem Soc 133:20444–20457

    Article  CAS  Google Scholar 

  105. Cauda V, Schlossbauer A, Bein T (2010) Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater 132:60–71. https://doi.org/10.1016/j.micromeso.2009.11.015

    Article  CAS  Google Scholar 

  106. Monopoli MP, Åberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786. https://doi.org/10.1038/nnano.2012.207

    Article  CAS  Google Scholar 

  107. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799. https://doi.org/10.1039/c1cs15233e

    Article  CAS  Google Scholar 

  108. Vroman L, Adams A, Fischer G, Munoz P (1980) Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55:156–159. https://doi.org/10.1182/blood.V55.1.156.156

    Article  CAS  Google Scholar 

  109. Wang L, Wang K, Santra S et al. (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654. https://doi.org/10.1021/ac0693619

    Article  Google Scholar 

  110. Nakamura M (2010) Approaches to the biofunctionalization of spherical silica nanomaterials. In: Kumar CSSR (ed) Nanotechnologies for the life sciences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  111. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22:4357–4362. https://doi.org/10.1021/la052797j

    Article  CAS  Google Scholar 

  112. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728. https://doi.org/10.2217/nnm.11.19

    Article  CAS  Google Scholar 

  113. Xu H, Yan F, Monson EE, Kopelman R (2003) Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. J Biomed Mater Res A 66:870–879. https://doi.org/10.1002/jbm.a.10057

    Article  CAS  Google Scholar 

  114. Thierry B, Zimmer L, McNiven S et al. (2008) Electrostatic self-assembly of PEG copolymers onto porous silica nanoparticles. Langmuir 24:8143–8150. https://doi.org/10.1021/la8007206

    Article  CAS  Google Scholar 

  115. Rio-Echevarria IM, Selvestrel F, Segat D et al. (2010) Highly PEGylated silica nanoparticles: “ready to use” stealth functional nanocarriers. J Mater Chem 20:2780–2787. https://doi.org/10.1039/b921735e

    Article  CAS  Google Scholar 

  116. Díaz B, Sánchez-Espinel C, Arruebo M et al. (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4:2025–2034. https://doi.org/10.1002/smll.200800199

    Article  CAS  Google Scholar 

  117. Zhu Y, Fang Y, Borchardt L, Kaskel S (2011) PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles. Microporous Mesoporous Mater 141:199–206. https://doi.org/10.1016/j.micromeso.2010.11.013

    Article  CAS  Google Scholar 

  118. Mosquera J, García I, Henriksen-Lacey M et al. (2019) Reducing protein corona formation and enhancing colloidal stability of gold nanoparticles by capping with silica monolayers. Chem Mater 31:57–61. https://doi.org/10.1021/acs.chemmater.8b04647

    Article  CAS  Google Scholar 

  119. Perdoor SS, Dubois F, Barbara A et al. (2020) Ultrabright silica-coated organic nanocrystals for two-photon in vivo imaging. ACS Appl Nano Mater 3:11933–11944. https://doi.org/10.1021/acsanm.0c02499

    Article  CAS  Google Scholar 

  120. Keefe AJ, Jiang S (2012) Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat Chem 4:59–63. https://doi.org/10.1038/nchem.1213

    Article  CAS  Google Scholar 

  121. García KP, Zarschler K, Barbaro L et al. (2014) Zwitterionic-coated “stealth” nanoparticles for biomedical applications: Recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10:2516–2529. https://doi.org/10.1002/smll.201303540

    Article  CAS  Google Scholar 

  122. Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce non specific adsorption. Langmuir 30:9625–9636. https://doi.org/10.1021/la500057j

    Article  CAS  Google Scholar 

  123. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308. https://doi.org/10.1002/anie.200902672

    Article  CAS  Google Scholar 

  124. Panja P, Das P, Mandal K, Jana NR (2017) Hyperbranched polyglycerol grafting on the surface of silica-coated nanoparticles for high colloidal stability and low nonspecific interaction. ACS Sustain Chem Engeneering 5:4879–4889. https://doi.org/10.1021/acssuschemeng.7b00292

    Article  CAS  Google Scholar 

  125. Liu J, Pelton R, Hrymak AN (2000) Properties of poly(N-isopropylacrylamide)-grafted colloidal silica. J Colloid Interface Sci 227:408–411. https://doi.org/10.1006/jcis.2000.6871

    Article  CAS  Google Scholar 

  126. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249. https://doi.org/10.1016/0079-6700(92)90023-R

    Article  CAS  Google Scholar 

  127. Muller P (1994) Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl Chem 66:1077–1184. https://doi.org/10.1351/pac199466051077

    Article  Google Scholar 

  128. Estephan ZG, Jaber JA, Schlenoff JB (2010) Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 26:16884–16889. https://doi.org/10.1021/la103095d

    Article  CAS  Google Scholar 

  129. Hayward JA, Chapman D (1984) Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials 5:135–142. https://doi.org/10.1016/0142-9612(84)90047-4

    Article  CAS  Google Scholar 

  130. Ishihara K, Aragaki R, Ueda T et al. (1990) Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res 24:1069–1077. https://doi.org/10.1002/jbm.820240809

    Article  CAS  Google Scholar 

  131. Ishihara K, Ziats NP, Tierney BP et al. (1991) Protein adsorption from human plasma is reduced on phospholipid polymers. J Biomed Mater Res 25:1397–1407. https://doi.org/10.1002/jbm.820251107

    Article  CAS  Google Scholar 

  132. Knowles BR, Wagner P, Maclaughlin S et al. (2017) Silica nanoparticles functionalized with Zwitterionic sulfobetaine siloxane for application as a versatile antifouling coating system. ACS Appl Mater Interfaces 9:18584–18594. https://doi.org/10.1021/acsami.7b04840

    Article  CAS  Google Scholar 

  133. Knowles BR, Yang D, Wagner P et al. (2019) Zwitterion functionalized silica nanoparticle coatings: the effect of particle size on protein, bacteria, and fungal spore adhesion. Langmuir 35:1335–1345. https://doi.org/10.1021/acs.langmuir.8b01550

    Article  CAS  Google Scholar 

  134. Loiola LMD, Batista M, Capeletti LB et al. (2019) Shielding and stealth effects of zwitterion moieties in double-functionalized silica nanoparticles. J Colloid Interface Sci 553:540–548. https://doi.org/10.1016/j.jcis.2019.06.044

    Article  CAS  Google Scholar 

  135. Hu F, Chen K, Xu H, Gu H (2015) Functional short-chain zwitterion coated silica nanoparticles with antifouling property in protein solutions. Colloids Surf B Biointerfaces 126:251–256. https://doi.org/10.1016/j.colsurfb.2014.12.036

    Article  CAS  Google Scholar 

  136. Knowles BR, Wagner P, Maclaughlin S et al. (2020) Carboxybetaine functionalized nanosilicas as protein resistant surface coatings. Biointerphases 15:011001. https://doi.org/10.1063/1.5126467

    Article  Google Scholar 

  137. Wang H, Cheng F, Shen W et al. (2016) Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone. Acta Biomater 40:273–281. https://doi.org/10.1016/j.actbio.2016.03.035

    Article  CAS  Google Scholar 

  138. Shahabi S, Treccani L, Dringen R, Rezwan K (2015) Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and sulfonate surface groups: effects of serum. ACS Appl Mater Interfaces 7:13821–13833. https://doi.org/10.1021/acsami.5b01900

    Article  CAS  Google Scholar 

  139. Encinas N, Angulo M, Astorga C et al. (2019) Mixed-charge pseudo-zwitterionic mesoporous silica nanoparticles with low-fouling and reduced cell uptake properties. Acta Biomater 84:317–327. https://doi.org/10.1016/j.actbio.2018.12.012

    Article  CAS  Google Scholar 

  140. Scheffer FR, Silveira CP, Morais J et al. (2020) Tailoring pseudo-zwitterionic bifunctionalized silica nanoparticles: from colloidal stability to biological interactions. Langmuir 36:10756–10763. https://doi.org/10.1021/acs.langmuir.0c01545

    Article  CAS  Google Scholar 

  141. Sun JT, Yu ZQ, Hong CY, Pan CY (2012) Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug release. Macromol Rapid Commun 33:811–818. https://doi.org/10.1002/marc.201100876

    Article  CAS  Google Scholar 

  142. Runser A, Dujardin D, Ernst P et al. (2020) Zwitterionic stealth dye-loaded polymer nanoparticles for intracellular imaging. ACS Appl Mater Interfaces 12:117–125. https://doi.org/10.1021/acsami.9b15396

    Article  CAS  Google Scholar 

  143. Dong Z, Mao J, Yang M et al. (2011) Phase behavior of poly(sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in protein solutions. Langmuir 27:15282–15291. https://doi.org/10.1021/la2038558

    Article  CAS  Google Scholar 

  144. Zhu Y, Sundaram HS, Liu S et al. (2014) A robust graft-to strategy to form multifunctional and stealth zwitterionic polymer-coated mesoporous silica nanoparticles. Biomacromolecules 15:1845–1851. https://doi.org/10.1021/bm500209a

    Article  CAS  Google Scholar 

  145. Chen K, Hu F, Gu H, Xu H (2017) Tuning of surface protein adsorption by spherical mixed charged silica brushes (MCB) with zwitterionic carboxybetaine component. J Mater Chem B 5:435–443. https://doi.org/10.1039/c6tb02817a

    Article  CAS  Google Scholar 

  146. Jia G, Cao Z, Xue H et al. (2009) Novel zwitterionic-polymer-coated silica nanoparticles. Langmuir 25:3196–3199. https://doi.org/10.1021/la803737c

    Article  CAS  Google Scholar 

  147. Matsuda Y, Kobayashi M, Annaka M et al. (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir 24:8772–8778. https://doi.org/10.1021/la8005647

    Article  CAS  Google Scholar 

  148. Sanchez-Salcedo S, Vallet-Regí M, Shahin SA et al. (2018) Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy. Chem Eng J 340:114–124. https://doi.org/10.1016/j.cej.2017.12.116

    Article  CAS  Google Scholar 

  149. Safavi-Sohi R, Maghari S, Raoufi M et al. (2016) Bypassing protein corona issue on active targeting: Zwitterionic coatings dictate specific interactions of targeting moieties and cell receptors. ACS Appl Mater Interfaces 8:22808–22818. https://doi.org/10.1021/acsami.6b05099

    Article  CAS  Google Scholar 

  150. Pálmai M, Nagy LN, Mihály J et al. (2013) Preparation, purification, and characterization of aminopropyl-functionalized silica sol. J Colloid Interface Sci 390:34–40. https://doi.org/10.1016/j.jcis.2012.09.025

    Article  CAS  Google Scholar 

  151. Picco AS, Ferreira LF, Liberato MS et al. (2018) Freeze-drying of silica nanoparticles: Redispersibility toward nanomedicine applications. Nanomedicine 13:16–18. https://doi.org/10.2217/nnm-2017-0280

    Article  CAS  Google Scholar 

  152. Du X, Kleitz F, Li X et al. (2018) Disulfide-bridged organosilica frameworks: designed, synthesis, redox-triggered biodegradation, and nanobiomedical applications. Adv Funct Mater 28:1707325. https://doi.org/10.1002/adfm.201707325

    Article  CAS  Google Scholar 

  153. Fuentes C, Ruiz-Rico M, Fuentes A et al. (2020) Degradation of silica particles functionalised with essential oil components under simulated physiological conditions. J Hazard Mater 399:123120. https://doi.org/10.1016/j.jhazmat.2020.123120

    Article  CAS  Google Scholar 

  154. Liu L, Kong C, Huo M et al. (2018) Schiff base interaction tuned mesoporous organosilica nanoplatforms with pH-responsive degradability for efficient anti-cancer drug delivery in vivo. Chem Commun 54:9190–9193. https://doi.org/10.1039/C8CC05043K

    Article  CAS  Google Scholar 

  155. Croissant JG, Fatieiev Y, Julfakyan K et al. (2016) Biodegradable oxamide-phenylene-based mesoporous organosilica nanoparticles with unprecedented drug payloads for delivery in cells. Chemistry 22:14806–14811. https://doi.org/10.1002/chem.201601714

    Article  CAS  Google Scholar 

  156. Fei W, Chen D, Tang H et al. (2020) Targeted GSH-exhausting and hydroxyl radical self-producing manganese–silica nanomissiles for MRI guided ferroptotic cancer therapy. Nanoscale 12:16738–16754. https://doi.org/10.1039/D0NR02396E

    Article  CAS  Google Scholar 

  157. Yang G, Phua SZF, Bindra AK, Zhao Y (2019) Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater 31:e1805730. https://doi.org/10.1002/adma.201805730

  158. Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64:3275–3281. https://doi.org/10.1016/S0016-7037(00)00426-9

    Article  CAS  Google Scholar 

  159. He Q, Zhang Z, Gao Y et al. (2009) Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small 5:2722–2729. https://doi.org/10.1002/smll.200900923

    Article  CAS  Google Scholar 

  160. Popplewell J, King S, Day J et al. (1998) Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorg Biochem 69:177–180. https://doi.org/10.1016/S0162-0134(97)10016-2

    Article  CAS  Google Scholar 

  161. Ogura M, Shinomiya S, Tateno J et al. (2001) Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A Gen 219:33–43. https://doi.org/10.1016/S0926-860X(01)00645-7

    Article  CAS  Google Scholar 

  162. Rimer JD, Trofymluk O, Navrotsky A et al. (2007) Kinetic and thermodynamic studies of silica nanoparticle dissolution. Chem Mater 19:4189–4197. https://doi.org/10.1021/cm070708d

    Article  CAS  Google Scholar 

  163. Etienne M, Walcarius A (2003) Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium. Talanta 59:1173–1188. https://doi.org/10.1016/S0039-9140(03)00024-9

    Article  CAS  Google Scholar 

  164. Nangia S, Garrison BJ (2008) Reaction rates and dissolution mechanisms of quartz as a function of pH. J Phys Chem A 112:2027–2033. https://doi.org/10.1021/jp076243w

    Article  CAS  Google Scholar 

  165. Nangia S, Garrison BJ (2009) Ab initio study of dissolution and precipitation reactions from the edge, kink, and terrace sites of quartz as a function of pH. Mol Phys 107:831–843. https://doi.org/10.1080/00268970802665621

    Article  CAS  Google Scholar 

  166. Kosmulski M (2011) The pH-dependent surface charging and points of zero charge. J Colloid Interface Sci 353:1–15. https://doi.org/10.1016/j.jcis.2010.08.023

    Article  CAS  Google Scholar 

  167. Kosmulski M (2018) The pH dependent surface charging and points of zero charge. VII. Update. Adv Colloid Interface Sci 251:115–138. https://doi.org/10.1016/j.cis.2017.10.005

    Article  CAS  Google Scholar 

  168. Ratirotjanakul W, Suteewong T, Polpanich D, Tangboriboonrat P (2019) Amino acid as a biodegradation accelerator of mesoporous silica nanoparticles. Microporous Mesoporous Mater 282:243–251. https://doi.org/10.1016/j.micromeso.2019.02.033

    Article  CAS  Google Scholar 

  169. Choi E, Kim S (2019) Surface pH buffering to promote degradation of mesoporous silica nanoparticles under a physiological condition. J Colloid Interface Sci 533:463–470. https://doi.org/10.1016/j.jcis.2018.08.088

    Article  CAS  Google Scholar 

  170. Yang Y, Wan J, Niu Y et al. (2016) Structure-dependent and glutathione-responsive biodegradable dendritic mesoporous organosilica nanoparticles for safe protein delivery. Chem Mater 28:9008–9016. https://doi.org/10.1021/acs.chemmater.6b03896

    Article  CAS  Google Scholar 

  171. Shen D, Yang J, Li X et al. (2014) Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett 14:923–932. https://doi.org/10.1021/nl404316v

    Article  CAS  Google Scholar 

  172. Yamada H, Urata C, Aoyama Y et al. (2012) Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater 24:1462–1471. https://doi.org/10.1021/cm3001688

    Article  CAS  Google Scholar 

  173. Hadipour Moghaddam SP, Saikia J, Yazdimamaghani M, Ghandehari H (2017) Redox-responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents. ACS Appl Mater Interfaces 9:21133–21146. https://doi.org/10.1021/acsami.7b04351

    Article  CAS  Google Scholar 

  174. Möller K, Bein T (2019) Degradable drug carriers: vanishing mesoporous silica nanoparticles. Chem Mater 31:4364–4378. https://doi.org/10.1021/acs.chemmater.9b00221

    Article  CAS  Google Scholar 

  175. Choi E, Lim D-K, Kim S (2020) Hydrolytic surface erosion of mesoporous silica nanoparticles for efficient intracellular delivery of cytochrome c. J Colloid Interface Sci 560:416–425. https://doi.org/10.1016/j.jcis.2019.10.100

    Article  CAS  Google Scholar 

  176. Yang SA, Choi S, Jeon SM, Yu J (2018) Silica nanoparticle stability in biological media revisited. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-017-18502-8

    Article  CAS  Google Scholar 

  177. Quignard S, Masse S, Laurent G, Coradin T (2013) Introduction of disulfide bridges within silica nanoparticles to control their intra-cellular degradation. Chem Commun 49:3410–3412. https://doi.org/10.1039/c3cc41062e

    Article  CAS  Google Scholar 

  178. Yu L, Chen Y, Wu M et al. (2016) “Manganese extraction” strategy enables tumor-sensitive biodegradability and theranostics of nanoparticles. J Am Chem Soc 138:9881–9894. https://doi.org/10.1021/jacs.6b04299

    Article  CAS  Google Scholar 

  179. Sha Z, Yang S, Fu L et al. (2021) Manganese-doped gold core mesoporous silica particles as a nanoplatform for dual-modality imaging and chemo-chemodynamic combination osteosarcoma therapy. Nanoscale 13:5077–5093. https://doi.org/10.1039/d0nr09220g

    Article  CAS  Google Scholar 

  180. Marques MRC, Loebenberg R, Almukainzi M (2011) Simulated biological fluids with possible application in dissolution testing. Dissolution Technol 18:15–28. https://doi.org/10.14227/DT180311P15

    Article  CAS  Google Scholar 

  181. Yang W, Tam J, Miller DA et al. (2008) High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int J Pharm 361:177–188. https://doi.org/10.1016/j.ijpharm.2008.05.003

    Article  CAS  Google Scholar 

  182. Dong R, Liu Y, Zhou Y et al. (2011) Photo-reversible supramolecular hyperbranched polymer based on host–guest interactions. Polym Chem 2:2771. https://doi.org/10.1039/c1py00426c

    Article  CAS  Google Scholar 

  183. Wang D, Xu Z, Chen Z et al. (2014) Fabrication of single-hole glutathione-responsive degradable hollow silica nanoparticles for drug delivery. ACS Appl Mater Interfaces 6:12600–12608. https://doi.org/10.1021/am502585x

    Article  CAS  Google Scholar 

  184. Tang H, Li C, Zhang Y et al. (2020) Targeted manganese doped silica nano GSH-cleaner for treatment of liver cancer by destroying the intracellular redox homeostasis. Theranostics 10:9865–9887. https://doi.org/10.7150/thno.46771

    Article  CAS  Google Scholar 

  185. Maggini L, Travaglini L, Cabrera I et al. (2016) Biodegradable peptide-silica nanodonuts. Chemistry 22:3697–3703. https://doi.org/10.1002/chem.201504605

    Article  CAS  Google Scholar 

  186. Croissant J, Cattoën X, Man MWC et al. (2014) Biodegradable ethylene-bis(propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for efficient in-vitro drug delivery. Adv Mater 26:6174–6180. https://doi.org/10.1002/adma.201401931

    Article  CAS  Google Scholar 

  187. Fatieiev Y, Croissant JG, Julfakyan K et al. (2015) Enzymatically degradable hybrid organic–inorganic bridged silsesquioxane nanoparticles for in vitro imaging. Nanoscale 7:15046–15050. https://doi.org/10.1039/C5NR03065J

    Article  CAS  Google Scholar 

  188. Croissant JG, Mauriello-Jimenez C, Maynadier M et al. (2015) Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells. Chem Commun 51:12324–12327. https://doi.org/10.1039/C5CC03736K

    Article  CAS  Google Scholar 

  189. Xu Z, Zhang K, Liu X, Zhang H (2013) A new strategy to prepare glutathione responsive silica nanoparticles. RSC Adv 3:17700. https://doi.org/10.1039/c3ra43098g

    Article  CAS  Google Scholar 

  190. Tang H, Chen D, Li C et al. (2019) Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells. Int J Pharm 572:118782. https://doi.org/10.1016/j.ijpharm.2019.118782

    Article  CAS  Google Scholar 

  191. Li XW, Zhao WR, Liu YJ et al. (2016) Facile synthesis of manganese silicate nanoparticles for pH/GSH-responsive T1-weighted magnetic resonance imaging. J Mater Chem B 4:4313–4321. https://doi.org/10.1039/C6TB00718J

    Article  CAS  Google Scholar 

  192. Fontecave T, Sanchez C, Azaïs T, Boissière C (2012) Chemical modification as a versatile tool for tuning stability of silica based mesoporous carriers in biologically relevant conditions. Chem Mater 24:4326–4336. https://doi.org/10.1021/cm302142k

    Article  CAS  Google Scholar 

  193. Kempen PJ, Greasley S, Parker KA et al. (2015) Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 5:631–642. https://doi.org/10.7150/thno.11389

    Article  CAS  Google Scholar 

  194. Ryabchikova EI, Chelobanov BP, Parkhomenko RG et al. (2017) Degradation of core-shell Au@SiO 2 nanoparticles in biological media. Microporous Mesoporous Mater 248:46–53. https://doi.org/10.1016/j.micromeso.2017.04.006

    Article  CAS  Google Scholar 

  195. Prasetyanto EA, Bertucci A, Septiadi D et al. (2016) Breakable hybrid organosilica nanocapsules for protein delivery. Angew Chem Int Ed 55:3323–3327. https://doi.org/10.1002/anie.201508288

    Article  CAS  Google Scholar 

  196. Lu J, Liong M, Li Z et al. (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805. https://doi.org/10.1002/smll.201000538

    Article  CAS  Google Scholar 

  197. Bindini E, Ramirez M, de los A, Rios X et al. (2021) In vivo tracking of the degradation of mesoporous silica through 89Zr radio-labeled core–shell nanoparticles. Small 2101519:1–10. https://doi.org/10.1002/smll.202101519

    Article  CAS  Google Scholar 

  198. Bhavsar D, Patel V, Sawant K (2019) Systemic investigation of in vitro and in vivo safety, toxicity and degradation of mesoporous silica nanoparticles synthesized using commercial sodium silicate. Microporous Mesoporous Mater 284:343–352. https://doi.org/10.1016/j.micromeso.2019.04.050

    Article  CAS  Google Scholar 

  199. Allen LH, Matijević E (1970) Stability of colloidal silica II. Ion exchange. J Colloid Interface Sci 33:420–429. https://doi.org/10.1016/0021-9797(70)90234-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge the financial support of the Fundação de Amparo à Pesquisa do Estado de São Paulo (processes 2018/00763-8, 2019/24894-7, 2016/16905-0, 2020/00767-3, and 2015/25406-5). ASP and MBC acknowledge UNLP and CONICET for their support. ASP and MC staff members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agustin Silvio Picco or Mateus Borba Cardoso.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz Schneid, A., Albuquerque, L.J.C., Mondo, G.B. et al. Colloidal stability and degradability of silica nanoparticles in biological fluids: a review. J Sol-Gel Sci Technol 102, 41–62 (2022). https://doi.org/10.1007/s10971-021-05695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05695-8

Keywords

Navigation