Skip to main content
Log in

Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The interest in core–shell materials with chemically tunable mesoporous surfaces has significantly grown in recent years. The main limitation to obtain these systems through sequential precipitation is the tuning of the core and shell sol-gel chemistry, which usually implies low concentrations and leads to high-quality colloids although in small quantities after a lengthy and costly process. Aerosol approaches can lead to faster production and easier separation of functional materials with well-defined architectures. We present a “green chemistry” general method to coat sub-micron colloidal particles with a variety of mesoporous metal oxide nanofilms via an aerosol synthesis technique. Different types of particulate supports with isotropic and anisotropic shapes were dispersed into the precursor solutions in order to synthesize a mesoporous shell keeping the shape of the support. We chose the synthesis of TiO2 and TiSiO4 nanofilms on conventional Stöber SiO2 spherical particles, and on anisotropic micronized mica particles as a case study. We used the commercial surfactant Pluronic® F127 as a porogen. The structure and composition of the obtained nanofilms were characterized by electron microscopy, X-ray diffraction, focused ion beam coupled to SEM, and nitrogen adsorption/desorption isotherms. The TiO2 shells obtained (with an anatase-like structure) have pore diameters between 3.9–4.8 nm depending on the support with film thicknesses of ~100 nm, while amorphous TiSiO4 shells have larger diameters (9.5–16 nm) with film thicknesses of between 50 and 200 nm depending on the support used. The method presented shows high reproducibility and, unlike batch methods, allows the continuous production and straightforward recovery of the materials.

Highlights

  • An aerosol method for coating sub-micron particles with mesoporous metal oxide films is presented.

  • Stöber SiO2 spherical particles or anisotropic micronized mica particles were used as substrates.

  • The use of aqueous solutions represents an eco-friendly approach to the synthesis of nanomaterials.

  • This method is straightforward and permits the easy production of core-mesoporous shell nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shen X, Zheng Q, Kim JK (2021) Prog. Mater. Sci. 115:100708

  2. Kim MS, Kim JW, Yun J et al. (2020) Appl. Surf. Sci. 515:146018

  3. Spoljaric S, Ju Y, Caruso F (2021) Chem. Mater. 33:1099

  4. Deng Y, Qi D, Deng C et al. (2008) J. Am. Chem. Soc. 130:28

  5. Yang Y, Guo X, Wei K et al. (2014) J. Nanoparticle Res. 16:2210

  6. Zhang Y, Dong M, Zhu S et al. (2014) Mater. Res. Bull. 49:448

  7. Ren, Y Ma, Z Bruce PG (2012) Chem. Soc. Rev. 41:4909

  8. Ouyang Y, Li L-X, Xie Z-H et al. (2020) J. Magnes. Alloy. 15

  9. Xiong L, Liu J, Li Y et al. (2019) Prog. Org. Coatings 135:228

  10. Castaldo R, de Luna MS, Siviello C et al. (2020) J. Cult. Herit. 44:317

  11. Zhang Z, Runa A, Wu J et al. (2019) Chinese Chem. Lett. 30:779

  12. Saadaoui M, Fernández I, Sánchez A et al. (2015) Electrochem. Commun. 58:57

  13. Luo W, Xu X, Zhou B et al. (2019) Mater. Sci. Eng. C 100:85

  14. Bruno MM, Franceschini EA, Planes GA et al. (2009) J. Appl. Electrochem. 40:257

  15. Franceschini EA, Gomez MJ, Lacconi GI (2019) J. Energy Chem. 29:79

  16. Jiang J, Kucernak A (2002) J. Electroanal. Chem. 520:64

  17. Gautam J, Thanh TD, Maiti K et al. (2018) Carbon N. Y. 137:358

  18. Lee JE, Lee N, Kim T et al. (2011) Acc. Chem. Res. 44:893

  19. Li Z, Liu M, Fan L et al. (2014) Biosens. Bioelectron. 52:293

  20. Ling Y, Long M, Hu P et al. (2014) J. Hazard. Mater. 264:195

  21. Lv Q, Li G, Sun H et al. (2014) Microporous Mesoporous Mater. 186:7

  22. Sun Y, Sun Y, Wang L et al. (2014) Microporous Mesoporous Mater. 185:245

  23. Mohamed El-Toni A, Khan A, Abbas Ibrahim M et al. (2012) J. Colloid Interface Sci. 378:83

  24. Liu F, Tian H, He J (2014) J. Colloid Interface Sci. 419:68

  25. Lan K, Xia Y, Wang R et al. (2019) Matter 1:527

  26. Faustini M, Boissière C, Nicole L et al. (2014) Chem. Mater. 26:709

  27. Boissiere C, Grosso D, Chaumonnot A et al. (2011) Adv. Mater. 23:599

  28. Franceschini EA, Nanostructured Multifunctional Materials Synthesis, Characterization, Applications and Computational Simulation (CRC Press, First Edition. | Boca Raton: CRC Press, Taylor & Francis, 2021)

  29. Grosso D, Soler-Illia GJ de AA, Crepaldi EL et al. (2003) Adv. Funct. Mater. 13:37

  30. Debecker DP, Le Bras S, Boissière C et al. (2018) Chem. Soc. Rev. 47:4112

  31. Zelcer A, Franceschini EA, Lombardo MV et al. (2020) J. Sol-Gel Sci. Technol. 94:195

  32. Stöber W, Fink A, Bohn E (1968) J. Colloid Interface Sci. 26:62

  33. Thommes M (2010) Chemie-Ingenieur-Technik 82:1059

  34. Rodríguez-Carvajal J (1993) Phys. B Phys. Condens. Matter 192:55

  35. Alexandridis P, Hatton TA (1995) Colloids Surfaces A 96:1

  36. Franceschini EA, Bruno MM, Viva FA et al. (2012) Electrochim. Acta 71:173

  37. Franceschini EA, Planes GA, Williams FJ et al. (2011) J. Power Sources 196:1723

  38. Velasco MI, Franzoni MB, Franceschini EA et al. (2017) J. Phys. Chem. C 121:7533

  39. Rouquerol F, Rouquerol J, Sing K (1999) Vak. Forsch. Und Prax. 11:191

  40. Gregg SJ, Sing K, Adsorption, Surface Area, and Porosity, Second (Academic Press, London, 1982)

  41. Thommes M, Kaneko K, Neimark AV et al. (2015) Pure Appl. Chem. 87:1051

  42. Dhanalekshmi KI, Sangeetha K, Meena KS et al. (2019) Photodiagnosis Photodyn. Ther. 26:79

  43. Bai A, Song H, He G et al. (2016) Ceram. Int. 42:7583

  44. Cai T, Wang Y, Dong Y et al. (2013) Mater. Lett. 111:173

  45. Sakthisabarimoorthi A, Britto Dhas SAM, Jose M (2020) Mater. Chem. Phys. 240:122154

  46. Angelomé PC, Andrini L, Fuertes MC et al. (2010) 13:256

  47. Yin JB, Zhao XP (2002) Chem. Mater. 14:4633

    Article  CAS  Google Scholar 

  48. Araujo PZ, Luca V, Bozzano PB et al. (2010) ACS Appl. Mater. Interfaces 2:1663

  49. Violi IL, Perez MD, Fuertes MC et al. (2012) ACS Appl. Mater. Interfaces 4:4320

  50. Angelomé PC, Andrini L, Calvo ME et al. (2007) J. Phys. Chem. C 111:10886

  51. Swanson HE, Fuyat RK, Ugrinic GM (1953) Standard X-Ray Diffraction Powder Patterns

Download references

Acknowledgements

The authors thank financial support from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-3625, PICT 2015-3853, PICT Start Up 2017–4651, PICT 2017-0250, PUE2017-INFIQC, FSNANO 2010-007, PICT 2018-04236) and CONICET. We gratefully acknowledge M.C. Marchi (CMA, FCEN, UBA) for the SEM images and N. de Vicenzo for the TEM. GG is researcher in the FIB Microscopy Lab (INTI). MVL, AZ, EAF, and GJAAS-I are permanent research fellows of CONICET.

Funding

ANPCYT PICT 2015-3625, ANPCYT PICT 2015-3853, ANPCYT PICT Start Up 2017–4651, ANPCYT PICT 2017-0250, CONICET PUE2017-INFIQC, FSNANO 2010-007.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Esteban Franceschini] [Galo Soler Illia]; Methodology: [Galo Soler Illia], [Andres Zelcer]; Formal analysis and investigation: [Esteban Franceschini] [M. Veronica Lombardo] [Gustavo Gimenez]; Data Analysis: [All authors]; Writing—original draft preparation: [Esteban Franceschini] [M. Veronica Lombardo]; Writing—review and editing: [All Authors]; Funding acquisition: [Galo Soler Illia] [Esteban Franceschini]; Resources: [Galo Soler Illia] [Esteban Franceschini]; Supervision: [Galo Soler Illia].

Corresponding authors

Correspondence to Esteban A. Franceschini or Galo J.A.A. Soler-Illia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franceschini, E.A., Giménez, G., Lombardo, M.V. et al. Nanoencapsulation of isotropic and anisotropic particles through a green chemistry aerosol method: a scalable approach for ad-hoc surface tuning. J Sol-Gel Sci Technol 102, 208–218 (2022). https://doi.org/10.1007/s10971-021-05680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05680-1

Keywords

Navigation