Skip to main content
Log in

Sol-gel coatings for protection and biofunctionalization of stainless-steel prosthetic intracorporeal devices in Latin-America

  • Review Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Latin-American researchers, collaborating with the international community, have contributed in the last decades to sol-gel knowledge related to the generation of coatings on metallic bioimplants. Sol-gel technology allows the formation of relatively thin (1–2 microns) adherent, flexible and compact coatings that can be used as protection against corrosive media and for post-functionalization. Regarding low carbon surgical grade stainless steel, the application of silica-based sol-gel coatings with different types of reinforcement and incorporating bioactive or antibacterial particles as a second phase, generates promising corrosion protection properties within physiological environments. In addition, they can prevent infections and stimulate bone formation/growth. This work explores the corrosion protection features provided by thin functionalized silica sol gel coatings to be used in orthopaedic devices.

Highlights

  • A review of sol gel coating on metallic materials for prosthesis in LA is presented.

  • Sol gel coatings can be tailored to fulfil different requirements.

  • Sol gel coating on stainless steel can enhance corrosion resistance and improve osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R Reports 87:1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  2. Olsson C-OA, Landolt D (2003) Passive films on stainless steels - Chemistry, structure and growth. Electrochim Acta 48:1093–1104. https://doi.org/10.1016/S0013-4686(02)00841-1

    Article  CAS  Google Scholar 

  3. Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proc Inst Mech Eng Part H J Eng Med 224:1487–1507. https://doi.org/10.1243/09544119JEIM901

    Article  CAS  Google Scholar 

  4. Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, Raza MR (2017) Corrosion and surface modification on biocompatible metals: A review. Mater Sci Eng C 77:1261–1274. https://doi.org/10.1016/j.msec.2017.04.102

    Article  CAS  Google Scholar 

  5. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421

    Article  CAS  Google Scholar 

  6. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11:1–18. https://doi.org/10.1089/ten.2005.11.1

    Article  CAS  Google Scholar 

  7. Jones JR (2013) Review of bioactive glass: From Hench to hybrids. Acta Biomater 9:4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023

    Article  CAS  Google Scholar 

  8. Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21

    Article  CAS  Google Scholar 

  9. Disegi JA, Eschbach L (2000) Stainless steel in bone surgery. Inj Int J Care Inj 31:2–6

    Article  Google Scholar 

  10. Hench LL (1997) Sol-gel materials for bioceramic applications. Curr Opin Solid State Mater Sci 2:604–610. https://doi.org/10.1016/S1359-0286(97)80053-8

    Article  CAS  Google Scholar 

  11. Peterson SL, McDonald A, Gourley PL, Sasaki DY (2005) Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. J Biomed Mater Res Part A 72A:10–18. https://doi.org/10.1002/jbm.a.30166

    Article  CAS  Google Scholar 

  12. Guglielmi M (1997) Sol-gel coatings on metals. J Sol-Gel Sci Technol 8:443–449

    CAS  Google Scholar 

  13. Domínguez-Trujillo C, Peón E, Chicardi E, Pérez H, Rodríguez-Ortiz JA, Pavón JJ, García-Couce J, Galván JC, García-Moreno F, Torres Y (2018) Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surf Coatings Technol 333:158–162. https://doi.org/10.1016/j.surfcoat.2017.10.079

    Article  CAS  Google Scholar 

  14. dos Santos ML, dos Santos Riccardi C, de Almeida Filho E, Guastaldi AC (2018) Sol–gel based calcium phosphates coatings deposited on binary Ti–Mo alloys modified by laser beam irradiation for biomaterial/clinical applications. J Mater Sci Mater Med 29:. https://doi.org/10.1007/s10856-018-6091-z

  15. de Aguiar KMF, Nascimento MV, Faccioni JL, Noeske P-LM, Gätjen L, Rischka K, Rodrigues-Filho UP (2019) Urethanes PDMS-based: functional hybrid coatings for metallic dental implants. Appl Surf Sci 484:1128–1140. https://doi.org/10.1016/j.apsusc.2019.04.058

    Article  CAS  Google Scholar 

  16. Harb SV, Uvida MC, Trentin A, Oliveira Lobo A, Webster TJ, Pulcinelli SH, Santilli CV, Hammer P (2020) PMMA-silica nanocomposite coating: Effective corrosion protection and biocompatibility for a Ti6Al4V alloy. Mater Sci Eng C 110. https://doi.org/10.1016/j.msec.2020.110713

  17. Santana JA, Kunst SR, Oliveira CT, Bastos AA, Ferreira MGS, Sarmento VHV (2020) PMMA-SiO2 organic-inorganic hybrid coating application to Ti-6Al-4V alloy prepared through the sol-gel method. J Braz Chem Soc 31:409–420. https://doi.org/10.21577/0103-5053.20190198

    Article  CAS  Google Scholar 

  18. Salvador DG, Marcolin P, Beltrami LVR, Brandalise RN, Kunst SR (2018) Development of alkoxide precursors-based hybrid coatings on Ti-6Al-4V alloy for biomedical applications: influence of pH of Sol. J Mater Eng Perform 27:2863–2874. https://doi.org/10.1007/s11665-018-3368-9

    Article  CAS  Google Scholar 

  19. Inzunza D, Covarrubias C, Marttens AV, Leighton Y, Carvajal JC, Valenzuela F, Díaz-Dosque M, Méndez N, Martínez C, Pino AM, Rodríguez JP, Cáceres M, Smith P (2014) Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties. J Biomed Mater Res - Part A 102:37–48. https://doi.org/10.1002/jbm.a.34673

    Article  CAS  Google Scholar 

  20. Covarrubias C, Mattmann M, Von Marttens A, Caviedes P, Arriagada C, Valenzuela F, Rodríguez JP, Corral C (2016) Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles. Appl Surf Sci 363:286–295. https://doi.org/10.1016/j.apsusc.2015.12.022

    Article  CAS  Google Scholar 

  21. Massa MA, Covarrubias C, Bittner M, Fuentevilla IA, Capetillo P, Von Marttens A, Carvajal JC (2014) Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater Sci Eng C 45:146–153. https://doi.org/10.1016/j.msec.2014.08.057

    Article  CAS  Google Scholar 

  22. Guimarães RP, Xavier LGDO, Maltos KLDM, Sá AF, Domingues RZ, Carvalho VED, Elias DC, Discacciati JAC, Pacheco CMDF, Moreira AN (2020) Koh group influence on titanium surfaces and pure sol-gel silica for enhanced osteogenic activity. J Biomater Appl 35:405–421. https://doi.org/10.1177/0885328220934323

    Article  CAS  Google Scholar 

  23. Gonzalez Galdos MV, Pastore JI, Ballarre J, Ceré SM (2017) Dual-surface modification of titanium alloy with anodizing treatment and bioceramic particles for enhancing prosthetic devices. J Mater Sci 52:9151–9165. https://doi.org/10.1007/s10853-017-1079-5

    Article  CAS  Google Scholar 

  24. Ballarre J, Aydemir T, Liverani L, Roether JA, Goldmann WH, Boccaccini AR (2020) Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. Surf Coatings Technol 381:125138. https://doi.org/10.1016/J.SURFCOAT.2019.125138

    Article  CAS  Google Scholar 

  25. Rueda LM, Nieves C, Hernández Barrios CA, Coy AE, Viejo F (2016) Design of TEOS-GPTMS sol-gel coatings on rare-earth magnesium alloys employed in the manufacture of orthopaedic implants. In: Journal of Physics: Conference Series

  26. Omar SA, Ballarre J, Castro Y, Martinez Campos E, Schreiner W, Durán A, Cere SM (2020) 58S and 68S sol-gel glass-like bioactive coatings for enhancing the implant performance of AZ91D magnesium alloy. Surf Coatings Technol 400. https://doi.org/10.1016/j.surfcoat.2020.126224

  27. Merlo JL, Detsch R, Ceré S, Boccaccini AR, Ballarre J (2021) Degradable magnesium implants: improving bioactive and antibacterial performance by designed hybrid coatings. J Mater Res. https://doi.org/10.1557/s43578-020-00099-w

  28. Helsen JA, Jurgen Breme H (1998) Metals as biomaterials. John Wiley Sons, England

  29. Biehl V, Breme J (2001) Metallic biomaterials. Mat-wiss, u Werkstofftech 32:137–144

    Article  CAS  Google Scholar 

  30. Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G (2006) Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 60:3752–3757. https://doi.org/10.1016/j.matlet.2006.03.102

    Article  CAS  Google Scholar 

  31. Ballarre J, López DA, Schreiner WH, Durán A, Ceré SM (2007) Protective hybrid sol-gel coatings containing bioactive particles on surgical grade stainless steel: Surface characterization. Appl Surf Sci 253:7260–7264

    Article  CAS  Google Scholar 

  32. de Damborenea JJ, Pellegri N, de Sanctis O, Duran A (1995) Electrochemical behavior of SiO2 sol-gel coatings on stainless steels. J Sol-Gel Sci Technol 4:239–244

    Article  Google Scholar 

  33. de Sanctis O, Gomez L, Pellegri N, Parodi C, Marajofsky A, Duran A (1990) Protective glass coatings on metallic substrates. J Non Cryst Solids 121:338–343

    Article  Google Scholar 

  34. Galliano P, de Damborenea JJ, Pascual MJ, Duran A (1998) Sol-gel coatings on 316L stainless steel for clinical applications. J Sol-Gel Sci Technol 13:723–727

    Article  CAS  Google Scholar 

  35. Durán A, Conde A, Gomez Coedo A, Dorado T, García C, Ceré SM (2004) Sol Gel coatings for protective and bioactive functionalisation of metals used in orthopaedic devices. J Mater Chem 14:2282

    Article  Google Scholar 

  36. Ballarre J, Liu Y, Mendoza E, Schell H, Díaz F, Orellano JC, Fratzl P, García C, Ceré SM (2012) Enhancing low cost stainless steel implants: Bioactive silica-based sol-gel coatings with wollastonite particles. Int J Nano Biomater 4:33–53

    Article  CAS  Google Scholar 

  37. Gallardo J, Galliano P, Duran A (2001) Bioactive and protective sol-gel coatings on metals for orthopaedic prostheses. J Sol-Gel Sci Technol 21:65–74

    Article  CAS  Google Scholar 

  38. Bautista-Ruiz J, Chaparro A, Sánchez J (2019) Characterization of the anticorrosive properties in bismuth-titanate films obtained by the sol-gel method. In: Journal of Physics: Conference Series

  39. Ferreira JMJ, Rajendran V, Simonelli G, Silva ACM, Santos LCL, Mattedi S, Pontes LAM, Costa I, Rossi JL, Baker MA (2020) Deposition and characterization of a sol-gel Mg-substituted fluorapatite coating with new stoichiometries. Appl Surf Sci 505:. https://doi.org/10.1016/j.apsusc.2019.144393

  40. Houmard M, Nunes EHM, Vasconcelos DCL, Berthomé G, Joud J-C, Langlet M, Vasconcelos WL (2014) Correlation between sol–gel reactivity and wettability of silica films deposited on stainless steel. Appl Surf Sci 289:218–223. https://doi.org/10.1016/j.apsusc.2013.10.137

    Article  CAS  Google Scholar 

  41. Caballero YT, Rondón EA, Rueda L, Hernández Barrios CA, Coy A, Viejo F (2016) Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel. In: Journal of Physics: Conference Series

  42. Longhi M, Casagrande RB, Kunst SR, dos Santosc V, Ferreira JZ (2019) Obtainment and characterization of a silicon alkoxides-based coating applied to a substrate of stainless steel 316L for use in biomaterials. Mater Res 22. https://doi.org/10.1590/1980-5373-MR-2018-0514

  43. Ballarre J, Seltzer R, Mendoza E, Orellano JC, Mai YW, García C, Ceré SM (2011) Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol-gel coatings containing wollastonite particles applied on stainless steel implants. Mater Sci Eng C 31:545–552

    Article  CAS  Google Scholar 

  44. Ballarre J, Desimone PM, Chorro M, Baca M, Orellano JC, Ceré SM (2013) Bone quality around bioactive silica-based coated stainless steel implants: analysis by Micro-Raman, XRF and XAS techniques. J Struct Biol 184:164–172

    Article  CAS  Google Scholar 

  45. Balestriere MA, Schuhladen K, Seitz KH, Boccaccini AR, Cere SM, Ballarre J (2020) Sol-gel coatings incorporating borosilicate bioactive glass enhance anti corrosive and surface performance of stainless steel implants. J Electroanal Chem 114735. https://doi.org/10.1016/j.jelechem.2020.114735

  46. Omar S, Repp F, Desimone PM, Weinkamer R, Wagermaier W, Ceré S, Ballarre J (2015) Sol-gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless steel implants: electrochemical, bioactive and in vivo response. J Non Cryst Solids 425:1–10. https://doi.org/10.1016/j.jnoncrysol.2015.05.024

    Article  CAS  Google Scholar 

  47. Omar S, Pastore J, Bouchet A, Pellice S, Ballarín V, Ceré S, Ballarre J (2016) SiO2-CaO-P2O5 (58S) sol gel glass applied onto surgical grade stainless steel by spray technique: morphological characterization by digital image processing. Biomed. Glas 2:10

    Google Scholar 

  48. Ballarre J, Aydemir T, Liverani L, Roether JA, Goldmann WH, Boccaccini AR (2020) Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. Surf Coatings Technol 381. https://doi.org/10.1016/j.surfcoat.2019.125138

Download references

Acknowledgements

The authors would like to thank Dr. Alicia Durán Carrera from the Glass Ceramic Institute (ICV-CSIC) Spain, for being our guide in the “sol-gel world”, for being always opened to collaborate with us and our group in Argentina and for all the fruitful discussions and projects shared along many years of research. In addition, the authors would like to thank Dr. Pablo Galliano, for being the one who introduced us in the sol-gel in Argentina and thank to all the collaborators (PhD students, colleagues and technicians) who collaborate in our research. The support of CONICET (Argentina) and University of Mar del Plata is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Ceré.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballarre, J., Ceré, S.M. Sol-gel coatings for protection and biofunctionalization of stainless-steel prosthetic intracorporeal devices in Latin-America. J Sol-Gel Sci Technol 102, 96–104 (2022). https://doi.org/10.1007/s10971-021-05658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05658-z

Keywords

Navigation