Skip to main content

Advertisement

Log in

Hexagonal CdS single crystals coupled with layered CoAl LDH—a step-scheme heterojunction for efficient photocatalytic hydrogen evolution

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

CdS and layered double hydroxides (LDHs) have drawn wide attention for photocatalytic water decomposition due to their abundant structure and excellent properties. The construction of a heterogeneous structure is a widely used method for a single material to overcome their narrow spectral light response and inefficient charge separation. In this work, a CdS/CoAl LDH step-scheme (S-scheme) heterojunction photocatalyst was successfully constructed by coupling CdS and CoAl LDH based on the complementary properties of the two materials. Compared with single CdS and CoAl LDH, the prepared CdS/CoAl LDH composite photocatalyst shows excellent photocatalytic hydrogen production efficiency by efficient use of electrons and holes under visible light irradiation. A significant number of electrons in the S-scheme heterojunction photocatalyst can be efficiently used to participate in water splitting while the holes were consumed by the sacrificial reagent. Therefore, the building of the S-scheme heterojunction eventually improved the efficiency of photocatalyst hydrogen production by efficiently separating electrons and holes. At the same time, our work will provide a new approach for the practical application of such semiconductors.

Highlights

  • An S-scheme heterojunction composed of CdS and CoAl LDH was formed.

  • The recombination of photoinduced electron-hole pairs was inhibited.

  • Highly improved photocatalytic hydrogen evolution activity was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu QL, Zhang LY, Cheng B, Fan JJ, Yu JG (2020) S-scheme heterojunction photocatalyst. Chem 6(7):1543–1559

    Article  CAS  Google Scholar 

  2. Xu FY, Meng K, Cheng B, Wang SY, Xu JS, Yu JG (2020) Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun 11:4613

    Article  CAS  Google Scholar 

  3. Yan X, Jin ZL, Zhang YP, Liu H, Ma XL (2019) Controllable design of double metal oxide (NiCo2O4) modified CdS for efficient photocatalytic hydrogen production. Phys Chem Chem Phys 21:4501–4512

    Article  CAS  Google Scholar 

  4. Shi JW, Chen F, Hou LL, Li GS, Li YQ, Guan XJ, Liu HP, Guo LJ (2021) Eosin Y bidentately bridged on UiO-66-NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production. Appl Catal B Environ 280:119385

    Article  CAS  Google Scholar 

  5. He F, Zhu BC, Cheng B, Yu JG, Ho WK, Macyk W (2020) 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B: Environ 272:119006

    Article  CAS  Google Scholar 

  6. Gong HM, Zhang XJ, Wang GR, Liu Y, Li YB, Jin ZL (2020) Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Mol Catal 485:110832

    Article  CAS  Google Scholar 

  7. Wang C, Li LF, Shi JW, Jin H (2021) Biochar production by coconut shell gasification in supercritical water and evolution of its porous structure. J Anal Appl Pyrol 156:105151

    Article  CAS  Google Scholar 

  8. Zhang MY, Hu QY, Ma KW, Ding Y, Li C (2020) Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 73:104810

    Article  CAS  Google Scholar 

  9. Meng XY, Zhang CC, Dong CZ, Sun WJ, Ji D, Ding Y (2020) Carbon quantum dots assisted strategy to synthesize Co@NC for boosting photocatalytic hydrogen evolution performance of CdS. Chem Eng J 389:124432

    Article  CAS  Google Scholar 

  10. Liu Q, Li Z, Liu QW, Cheng CC, Song MX, Huang CJ (2020) Photocatalysis under shell: Co@BN core-shell composites for efficient EY sensitized photocatalytic hydrogen evolution. Appl Surf Sci 514:146096

    Article  CAS  Google Scholar 

  11. Chen ZH, Cheng CC, Xing FS, Huang CJ (2020) Strong interfacial coupling for NiS thin layer covered CdS nanorods with highly efficient photocatalytic hydrogen production. N. J Chem 44:19083

    Article  CAS  Google Scholar 

  12. Ge HN, Xu FY, Cheng B, Yu JG, Ho WK (2019) S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 11:6301–6309

    Article  CAS  Google Scholar 

  13. Xia PF, Cao SW, Zhu BC, Liu MJ, Shi MS, Yu JG, Zhang YF (2020) Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Ed 59:5218–5225

    Article  CAS  Google Scholar 

  14. Li BW, Li QY, Gupta B, He CQ, Yang JJ (2020) Boosting visible-light-driven catalytic hydrogen evolution via surface Ti3+ and bulk oxygen vacancies in urchin-like hollow black TiO2 decorated with RuO2 and Pt dual cocatalysts. Catal Sci Technol 10:7914–7921

    Article  CAS  Google Scholar 

  15. Jin ZL, Jian QY, Guo QJ (2020) Enhanced photocatalytic hydrogen evolution over semi-crystalline tungsten phosphide. Int J Hydrog Energy 44:26848–26862

    Article  Google Scholar 

  16. Pan JB, Shen S, Zhou W, Tang J, Ding HZ, Wang JB, Chen L, Au CT, Yin SF (2020) Recent progress in photocatalytic hydrogen evolution. Acta Phys—Chim Sin 36(3):1905068

    Article  Google Scholar 

  17. Wei RB, Huang ZL, Gu GH, Wang Z, Zen LX, Chen YB, Liu ZQ (2018) Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl Catal B: Environ 231:101–107

    Article  CAS  Google Scholar 

  18. Zirak M, Akhavan O, Moradlou O, Nien YT, Moshfegh AZ (2014) Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J Alloy Compd 590:507–513

    Article  CAS  Google Scholar 

  19. Akhavan O, Hashemi E, Zare H, Shamsara M, Taghavinia N, Heidari F (2016) Influence of heavy nanocrystals on spermatozoa and fertility of mammals. Mater Sci Eng C 69:52–59

    Article  CAS  Google Scholar 

  20. Moulis JM, Thévenod F (2010) New perspectives in cadmium toxicity: an introduction. Biometals 23:763–768

    Article  CAS  Google Scholar 

  21. Zhang LJ, Jin ZL (2019) Effective electron-hole separation over controllable construction of CdS/Co-Ni-P core/shell nanophotocatalyst for improved photocatalytic hydrogen evolution under visible-light-driven. Catal Surv Asia 23:219–230

    Article  CAS  Google Scholar 

  22. Jin ZL, Wang ZJ, Yuan H, Han FL (2019) Inserting MOF into flaky CdS photocatalyst forming special structure and active sites for efficient hydrogen production. Int J Hydrog Energy 44:19640–19649

    Article  CAS  Google Scholar 

  23. Liu Y, Ma XH, Wang HY, Li YB, Jin ZL (2019) CdS photocorrosion prevent from MoSe2 modification. Catal Surv Asia 23:231–244

    Article  Google Scholar 

  24. Zare H, Marandi M, Fardindoost S, Sharma VK, Yeltik A, Akhavan O, Demir HV, Taghavinia N (2015) High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Res 8:2317–2328

    Article  CAS  Google Scholar 

  25. Li HY, Hao XQ, Liu Y, Li YB, Jin ZL (2020) ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 572:62–73

    Article  CAS  Google Scholar 

  26. Li J, Li BW, Li QL, Yang JJ (2019) The effect of N-doped form on visible light photoactivity of Z-scheme g-C3N4/TiO2 photocatalyst. Appl Surf Sci 466:268–273

    Article  CAS  Google Scholar 

  27. Wang GR, Jin ZL (2021) Oxygen-vacancy-rich cobalt-aluminium hydrotalcite structure for supercapacitor cathode with high performance. J Mater Chem C 9:620–632

    Article  CAS  Google Scholar 

  28. Jin ZL, Li YB, Ma QX (2021) CoAl LDH@Ni-MOF-74 S-scheme heterojunction for efficient hydrogen evolution. Trans Tianjin Univ 27:127–138

    Article  CAS  Google Scholar 

  29. Wang GR, Jin ZL, Zhang WX (2020) Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors. J Colloid Interface Sci 577:115–126

    Article  CAS  Google Scholar 

  30. Wu LZ (2020) Layered double hydroxide based materials for the photocatalytic CO2 reduction under long wavelength irradiation. Acta Phys—Chim Sin 36(9):2004005

    Article  Google Scholar 

  31. Li YB, Jin ZL, Wang HY, Zhang YP, Liu H (2019) Effect of electron-hole separation in MoO3@Ni2P hybrid nanocomposite as highly efficient metal-free photocatalyst for H2 production. J Colloid Interface Sci 537:629–639

    Article  CAS  Google Scholar 

  32. Li YB, Jin ZL, Zhang LJ (2019) Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production. Chin J Catal 40:390–402

    Article  CAS  Google Scholar 

  33. Luo WJ, Chen XJ, Wei Z (2019) Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance. Appl Catal B: Environ 255:117761

    Article  CAS  Google Scholar 

  34. Jin ZL, Zhang LJ, Wang GR, Li YB, Wang YB (2020) Graphdiyne formed S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution over rational design novel CuI-GD/g-C3N4 composite. Sustain. Energy Fuels 4:5088–5101

    Article  CAS  Google Scholar 

  35. Wang J, Wang GH, Cheng B, Yu JG, Fan JJ (2021) Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin J Catal 42:56–68

    Article  Google Scholar 

  36. Yan X, Jin ZL (2021) Interface engineering: NiAl LDH in-situ derived NiP2 quantum dots and Cu3P nanoparticles ingeniously constructed p-n heterojunction for photocatalytic hydrogen evolution. Chem Eng J 420:127681

    Article  Google Scholar 

  37. Yang MX, Wang K, Li YB, Yang KC, Jin ZL (2021) Pristine hexagonal CdS assembled with NiV LDH nanosheet formed p-n heterojunction for efficient photocatalytic hydrogen evolution. Appl Surf Sci 548:149212

    Article  CAS  Google Scholar 

  38. Li YB, Wang GR, Wang YB, Jin ZL (2020) Phosphating 2D CoAl LDH anchored on 3D self-assembled NiTiO3 hollow rod for efficient hydrogen evolution. Catal Sci Technol 10:2931–2947

    Article  CAS  Google Scholar 

  39. Yan X, Jin ZL, Zhang YP (2019) Sustainable and efficient hydrogen evolution over noble metal-free WP double modified ZnxCd1-xS photocatalyst under visible-light driven. Dalton Trans 48:11122–11135

    Article  CAS  Google Scholar 

  40. Jo WK, Tonda S (2019) Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants. J Hazard Mater 368:778–787

    Article  CAS  Google Scholar 

  41. Wang YN, Dou LG, Zhang H (2017) Nanosheet array-like palladium-catalysts Pdx/rGO@CoAl-LDH via lattice atomic-confined in situ reduction for highly efficient heck coupling reaction. ACS Appl Mater Interfaces 9:38784–38795

    Article  CAS  Google Scholar 

  42. Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880

    Article  CAS  Google Scholar 

  43. Li HY, Wang GR, Gong HM, Jin ZL (2020) Phosphated 2D MoS2 nanosheets and 3D NiTiO3 nanorods for efficient photocatalytic hydrogen evolution. ChemCatChem 12:5492–5503

    Article  CAS  Google Scholar 

  44. Das S, Patnaik K (2019) Fabrication of a Au-loaded CaFe2O4/CoAl-LDH p-n junction based architecture with stoichiometric H2 & O2 generation and Cr (vi) reduction under visible light. Inorg Chem Front 6:94–109

    Article  CAS  Google Scholar 

  45. Guo XX, Wu F, Hao GZ, Peng SS, Wang N, Li QL, Hu YB, Jiang W (2019) Activating hierarchically hortensia-like CoAl layered double hydroxides by alkaline etching and anion modulation strategies for the efficient oxygen evolution reaction. Dalton Trans 48:5214–5221

    Article  CAS  Google Scholar 

  46. Zhou HL, Song YX, Liu YC, Li HD, Li WJ, Chang ZD (2018) Fabrication of CdS/NiFe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution. Int J Hydrog Energy 43:14328–14336

    Article  CAS  Google Scholar 

  47. Li YB, Jin ZL, Hao XQ, Wang GR (2019) Insights into the unique rolet of cobalt phosphide for boosting hydrogen evolution activity based on MIL-125-NH2. Int J Hydrog Energy 44:17909–17921

    Article  CAS  Google Scholar 

  48. Jin ZL, Zhang XJ, Li YX, Li SB, Lu GX (2007) 5.1% quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal Commun 8:1267–1273

    Article  CAS  Google Scholar 

  49. Liu Y, Wang GR, Ma YL (2019) Noble-metal-free visible light driven hetero-structural Ni/ZnxCd1-xS photocatalyst for efficient hydrogen production. Catal Lett 149:1788–1799

    Article  CAS  Google Scholar 

  50. Zhang LJ, Jin ZL, Ma XL (2019) Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production. N. J Chem 43:3609–3618

    Article  CAS  Google Scholar 

  51. Rudolf C, Dragoi B, Ungureanu A (2014) NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts. Catal Sci Technol 4:179–189

    Article  CAS  Google Scholar 

  52. Liu H, Yan T, Jin ZL (2020) CoP nanoparticles as cocatalyst modified the CdS/NiWO4 of p-n heterojunction to produce hydrogen efficiently. N. J Chem 44:1426–1438

    Article  CAS  Google Scholar 

  53. Li XB, Liu JY, Huang JT, He CZ, Feng ZJ, Chen Z, Wan LY, Deng F (2021) All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys—Chim Sin 37(6):2010030

    Google Scholar 

  54. Liu Y, Hao XQ, Hu HQ, Jin ZL (2021) High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution. Acta Phys—Chim Sin 37(6):2008030

    Google Scholar 

  55. Jin ZL, Li YB, Hao XQ (2021) Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Phys—Chim Sin 37(10):1912033

    Google Scholar 

  56. Jiang ZM, Chen Q, Zheng QQ, Shen QC, Zhang P, Li X(2021) Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys —Chim Sin 37(6):2010059

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Ningxia Province (2021AAC03225) and the Fundamental Research Funds for the Central Universities of North Minzu University (2020KYQD29).

Author information

Authors and Affiliations

Authors

Contributions

K.W. and S.L. designed the experiments; S.L. and M.Y. performed the experiments; Z.J. and K.W. contributed reagents/materials and analysis tools; and S.L. wrote the paper.

Corresponding authors

Correspondence to Shanchi Liu or Zhiliang Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, S., Yang, M. et al. Hexagonal CdS single crystals coupled with layered CoAl LDH—a step-scheme heterojunction for efficient photocatalytic hydrogen evolution. J Sol-Gel Sci Technol 107, 70–82 (2023). https://doi.org/10.1007/s10971-021-05655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05655-2

Keywords

Navigation