Skip to main content
Log in

Experimental and multiscale simulation studies on Chitosan doped Hybrid/Zirconium—a bio-nanocomposite coating for aluminium protection

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aluminum metal and its alloys are most precious metals in industries, marine, and aircraft applications due to its interesting properties. However, aluminum metal undergoes corrosion in presence of aggressive chloride environments. Sol-gel based protective coating is mainly used to safeguard aluminum metal from corrosive chloride environments. In the present work, inorganic and polymeric composite corrosion inhibitors were synthesized for Al protection in aqueous 3.5% NaCl media (Zr and chitosan were hybridized using silanes). Surface morphology and chemical composition were duly characterized via FTIR and SEM-EDX, while corrosion resistivity was investigated by impedance (EIS) and polarization studies (PDS). Further, molecular modeling studies were performed to understand the corrosion inhibition mechanism and reveal those factors influences the corrosion efficiency of the chitosan-doped hybrid corrosion inhibitors.Chitosan-doped Hy/Zrnanocomposite sol-gel coating shown higher corrosion resistance of 96.1% than a hybrid (Hy) and Hy/Zr sol-gel coating. PDS showed that the chitosan-doped Hy/Zr sol-gel coating protects the Al metal by an anodic dissolution process. Computational chemistry and molecular dynamics study further evident the chitosan-doped Hy/Zr sol-gel coating enhanced the corrosion resistance of the Al substrates by lowering the molecular orbital gap energy and enhancing the adsorption of the corrosion inhibitors.

Highlights

  • A new carbohydrate polymer, Chitosan is doped with Hy/Zrbio-nanocomposite sol–gel based coating over Al metal.

  • Chitosan doped-Hy/Zr nanocomposite sol–gel coating is successfully fabricated and analyzed.

  • The maximum protection efficiency of Chitosan doped-Hy/Zr nanocomposite sol–gel coating is 96.14%.

  • DFT and MDs values are accordance with inhibition efficiency of modified Al metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang D, Bierwagen GP (2009) Sol–gel coatings on metals for corrosion protection. Prog Org Coat 64:327–338. https://doi.org/10.1016/j.porgcoat.2008.08.010

    Article  CAS  Google Scholar 

  2. Carneiro J, Tedim J, Ferreira MGS (2015) Chitosan as a smart coating for corrosion protection of aluminum alloy 2024: a review. Prog Org Coat 89:348–356. https://doi.org/10.1016/j.porgcoat.2015.03.008

    Article  CAS  Google Scholar 

  3. Wei Guo K (2011) A Review of Magnesium/Magnesium Alloys Corrosion. Recent Pat Corros Sci 1:72–90. https://doi.org/10.2174/2210683911101010072

    Article  Google Scholar 

  4. Twite RL, Bierwagen GP (1998) Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog Org Coat 33:91–100. https://doi.org/10.1016/S0300-9440(98)00015-0

    Article  CAS  Google Scholar 

  5. Asl RM, Yousefpour M, Shanaghi A (2021) The investigation of corrosion behavior of ZrO2–Al2O3-inhibitor/AA2024 nanocomposite thin film using sol-gel and AHP-TOPSIS method. Mater Chem Phys 262:124220. https://doi.org/10.1016/j.matchemphys.2021.124220

    Article  CAS  Google Scholar 

  6. Schem M, Schmidt T, Gerwann J et al. (2009) CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corros Sci 51:2304–2315. https://doi.org/10.1016/j.corsci.2009.06.007

    Article  CAS  Google Scholar 

  7. Peron M, Bin Afif A, Dadlani AL et al. (2020) Improving stress corrosion cracking behavior of AZ31 alloy with conformal thin titania and zirconia coatings for biomedical applications. J Mech Behav Biomed Mater 111:104005. https://doi.org/10.1016/j.jmbbm.2020.104005

    Article  CAS  Google Scholar 

  8. Harb SV, Trentin A, Uvida MC et al. (2020) A comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatings. Prog Org Coat 140:105477. https://doi.org/10.1016/j.porgcoat.2019.105477

    Article  CAS  Google Scholar 

  9. Liu T, Zhang F, Xue C et al. (2010) Structure stability and corrosion resistance of nano-TiO2 coatings on aluminum in seawater by a vacuum dip-coating method. Surf Coat Technol 205:2335–2339. https://doi.org/10.1016/j.surfcoat.2010.09.028

    Article  CAS  Google Scholar 

  10. Balaji J, Sethuraman MG (2016) Studies on the effects of thiourea and its derivatives doped—Hybrid/zirconium nanocomposite based sol-gel coating for the corrosion behaviour of aluminum metal. Prog Org Coat 99:463–473. https://doi.org/10.1016/j.porgcoat.2016.07.012

    Article  CAS  Google Scholar 

  11. Hua Q, Zeng Y, He Z et al. (2020) Microstructure, synergistic mechanism and corrosion behavior of tin oxide conversion film modified by chitosan on aluminum alloy surface. Colloid Interfac Sci Commun 36:100262. https://doi.org/10.1016/j.colcom.2020.100262

    Article  CAS  Google Scholar 

  12. Thai TT, Trinh AT, Olivier M-G (2020) Hybrid sol–gel coatings doped with cerium nanocontainers for active corrosion protection of AA2024. Prog Org Coat 138:105428. https://doi.org/10.1016/j.porgcoat.2019.105428

    Article  CAS  Google Scholar 

  13. Hamidon TS, Hussin MH (2020) Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Prog Org. Coatings 140:105478. https://doi.org/10.1016/j.porgcoat.2019.105478

    Article  CAS  Google Scholar 

  14. Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H (2013) Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int 39:8805–8813. https://doi.org/10.1016/j.ceramint.2013.04.068

    Article  CAS  Google Scholar 

  15. Bai M, Maher H, Pala Z, Hussain T (2018) Microstructure and phase stability of suspension high velocity oxy-fuel sprayed yttria stabilised zirconia coatings from aqueous and ethanol based suspensions. J Eur Ceram Soc 38:1878–1887. https://doi.org/10.1016/j.jeurceramsoc.2017.10.026

    Article  CAS  Google Scholar 

  16. Al-Naamani L, Dobretsov S, Dutta J, Burgess JG (2017) Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere 168:408–417. https://doi.org/10.1016/j.chemosphere.2016.10.033

    Article  CAS  Google Scholar 

  17. John S, Salam A, Baby AM, Joseph A (2019) Corrosion inhibition of mild steel using chitosan / TiO2 nanocomposite coatings. Prog Org Coat 129:254–259. https://doi.org/10.1016/j.porgcoat.2019.01.025

    Article  CAS  Google Scholar 

  18. Bahari HS, Ye F, Carrillo EAT et al. (2020) Chitosan nanocomposite coatings with enhanced corrosion inhibition effects for copper. Int J Biol Macromol 162:1566–1577. https://doi.org/10.1016/j.ijbiomac.2020.08.035

    Article  CAS  Google Scholar 

  19. Rinaudo M (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  20. Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

    Article  Google Scholar 

  21. Vignesh RB, Balaji J, Sethuraman MG (2017) Surface modification, characterization and corrosion protection of 1,3-diphenylthiourea doped sol-gel coating on aluminium. Prog Org Coat 111:112–123. https://doi.org/10.1016/j.porgcoat.2017.05.013

    Article  CAS  Google Scholar 

  22. John S, Joseph A, Jose AJ, Narayana B (2015) Enhancement of corrosion protection of mild steel by chitosan/ZnO nanoparticle composite membranes. Prog Org Coat 84:28–34. https://doi.org/10.1016/j.porgcoat.2015.02.005

    Article  CAS  Google Scholar 

  23. Rappe AK, Casewit CJ, Colwell KS et al. (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ja00051a040

    Article  CAS  Google Scholar 

  24. J. B, M.G. S (2017) Chitosan-doped-hybrid/TiO 2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium. Int J Biol Macromol 104:1730–1739. https://doi.org/10.1016/j.ijbiomac.2017.03.115

    Article  CAS  Google Scholar 

  25. Fayomi OSI, Akande IG, Popoola API (2018) Corrosion Protection Effect of Chitosan on the Performance Characteristics of A6063 Alloy. J Bio- Tribo-Corros 4:73. https://doi.org/10.1007/s40735-018-0192-6

    Article  Google Scholar 

  26. Karthik T, Rathinamoorthy R (2018) Sustainable Biopolymers in Textiles: an Overview. In: Handbook of Ecomaterials. Springer International Publishing, Cham

  27. Álvarez D, Collazo A, Hernández M et al. (2010) Characterization of hybrid sol–gel coatings doped with hydrotalcite-like compounds to improve corrosion resistance of AA2024-T3 alloys. Prog Org Coat 68:91–99. https://doi.org/10.1016/j.porgcoat.2009.09.023

    Article  CAS  Google Scholar 

  28. Vignesh RB, Sethuraman MG (2014) Enhancement of corrosion protection of 3-glycidoxypropyltrimethoxysilane-based sol–gel coating through methylthiourea doping. J Coat Technol Res 11:545–554. https://doi.org/10.1007/s11998-013-9557-4

    Article  CAS  Google Scholar 

  29. Zheludkevich ML, Serra R, Montemor MF et al. (2006) Corrosion protective properties of nanostructured sol–gel hybrid coatings to AA2024-T3. Surf Coat Technol 200:3084–3094. https://doi.org/10.1016/j.surfcoat.2004.09.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program (grant number: 2020R1I1A1A01068071) through the National Research Foundation (NRF) funded by the Ministry of Education of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Balaji, M. G. Sethuraman or T. H. Oh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, J., Bothi Raja, P., Sethuraman, M.G. et al. Experimental and multiscale simulation studies on Chitosan doped Hybrid/Zirconium—a bio-nanocomposite coating for aluminium protection. J Sol-Gel Sci Technol 100, 341–351 (2021). https://doi.org/10.1007/s10971-021-05642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05642-7

Keywords

Navigation