Abstract
Aerogels are nanoporous materials which were initially prepared by Kistler in 1931. During the past 80 years, the investigation of aerogels accelerated rapidly in the 1980s and 2000s due to potential applications in many important fields and industrialization demands. In recent years, aerogels are attracting more and more people because of the unprecedented global pressure of the problems of energy and environment. As the materials with the lowest thermal conductivity, aerogels are ideal materials for thermal insulations which can save energy and help to reduce carbon emissions. As materials with high porosity and specific surface area, aerogels are ideal materials to adsorb toxic molecules or ions in the air and water, which can be applied in environmental protection. Carbon aerogels, with a good electric conductivity, are also good electrode materials for supercapacitors. In this paper, recent progress in aerogel preparation and applications in China are reviewed.

Highlights
-
This paper is the first to introduce Chinese aerogel industry, which is helpful for countries around the world to better understand Chinese aerogel and strengthen in-depth cooperation.
-
This article not only introduces the academic research progress of aerogels in China, but also shows the practical industrial applications of Chinese aerogels.
-
This review points out the problems and challenges in the large-scale production and application of aerogel-based materials, and clarifies the direction for the international aerogel industry to become bigger and stronger.
This is a preview of subscription content, access via your institution.



















References
Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127(3211):741–741. https://doi.org/10.1038/127741a0
Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE (1976) Inorganic oxide aerogels. Adv Colloid Interface Sci 5(3):245–273. https://doi.org/10.1016/0001-8686(76)80004-8
Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Mater Lett 3(9–10):363–367. https://doi.org/10.1016/0167-577X(85)90077-1
Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227. https://doi.org/10.1007/BF01139044
Fu R, Zheng B, Liu J, Dresselhaus MS, Dresselhaus G, Satcher Jr. JH, Baumann TF (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13(7):558–562. https://doi.org/10.1002/adfm.200304289
Tamon H, Ishizaka H (2000) Influence of gelation temperature and catalysts on the mesoporous structure of resorcinol–formaldehyde aerogels. J Colloid Interface Sci 223(2):305–307. https://doi.org/10.1006/jcis.1999.6640
Barbieri O, Ehrburger-Dolle F, Rieker TP, Pajonk GM, Pinto N, Venkateswara Rao A (2001) Small-angle X-ray scattering of a new series of organic aerogels. J Non-Cryst Solids 285(1):109–115. https://doi.org/10.1016/S0022-3093(01)00440-9
Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285(1):210–215. https://doi.org/10.1016/S0022-3093(01)00455-0
Brandt R, Fricke J (2001) Acetic-acid-catalyzed and subcritically dried carbon aerogels with a nanometer-sized structure and a wide density range. J Non-Cryst Solids 350:131–135. https://doi.org/10.1016/j.jnoncrysol.2004.06.039
Brandt R, Petricevic R, Pröbstle H, Fricke J (2003) Acetic acid catalyzed carbon aerogels. J Porous Mater 10(3):171–178. https://doi.org/10.1023/A:1027486401135
Horikawa T, Hayashi J, Muroyama K (2004) Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon 42(8):1625–1633. https://doi.org/10.1016/j.carbon.2004.02.016
Yang Z (2020) Preparation and application of carbon aerogel and its composites. Ph.D., University of Science and Technology of China
Mulik S, Sotirious-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem Mater 19(25):6138–6144. https://doi.org/10.1021/cm071572m
Fricke J, Emmerling A (1992) Aerogels—prepartion, properties, applications. Struct Bond 77:37–87. https://doi.org/10.1007/BFb0036965
Miller JM, Dunn B, Tran TD, Pekala RW (1997) Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc 144(12):L309–L311. https://doi.org/10.1149/1.1838142
Tamon H, Ishizaka H, Mikami M, Okazaki M (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35(6):791–796. https://doi.org/10.1016/S0008-6223(97)00024-9
Attia SM, Wang J, Wu GM, Shen J, Ma JH (2002) Review on sol-gel derived coatings: process, techniques and optical applications. J Mater Sci Technol 18(3):211–218
Wang J, Zhang SQ, Guo YZ, Shen J, Attia SM, Zhou B, Zheng GZ, Gui YS (2001) Morphological effects on the electrical and electrochemical properties of carbon aerogels. J Electrochem Soc 148(6):D75–D77. https://doi.org/10.1149/1.1368104
Lin C, Ritter JA (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35(9):1271–1278. https://doi.org/10.1016/S0008-6223(97)00069-9
Leventis N, Sotiriou-Leventis C, Zhang GH, Rawashdeh MAM (2002) Nanoengineering strong silica aerogels. Nano Lett 2(9):957–960. https://doi.org/10.1021/nl025690e
Mohite PD, Mahadik-Khanolkar S, Luo HY, Lu HB, Sotiriou-Leventis C, Leventis N (2013) Polydicyclopentadiene aerogels grafted with PMMA: I. molecular and interparticle crosslinking†. Soft Matter 9(5):1516–1530. https://doi.org/10.1039/C2SM26931G
Paraskevoppulou P, Smirnova I, Athamneh T, Papastergiou M, Chriti D, Mali G, Čendak T, Chatzichristidi M, Raptopoulos G, Gurikov P (2020) Correction to “mechanically strong polyurea/polyurethane-cross-linked alginate aerogels”. ACS Appl Polym Mater 2(5):1974–1988. https://doi.org/10.1021/acsapm.0c01298
IDTechEx Research reports Aerogels 2021-2031: Technologies, Markets and Players
Jiang XQ (2020) Research progress of silica aerogel. Fine Spec Chem 28(9):42–46
Wang J (1993) Lightweight nanoporous material—aerogel. Mater Rev 2:36–38
Shen J, Wang J, Wu X (1994) Aerogels—a type of structure controllable new functional materials. Mater Sci Eng 12(03):1–5+37
Deng ZS, Wang J, Chen LY (1999) The development of aerogel applications. Mater Rev 6:47–49
Wang J, Shen J (1995) Preparation and investigation of highly effective thermal insulations: silica aerogels doped with TiO2 power and ceramic fiber. J Mater Res 9(6):568–572
Deng ZS, Wei JD, Wang J, Shen J, Zhou B, Zhang HL, Chen LY (1999) New preparation method of ultra-low denisity silica aerogels. At Energy Sci Techno 33(4):314–318
Deng ZS, Zhang HL, Wei JD, Wang J, Shen J, Zhou B, Chen LY (1999) Structure and thermal properties of doped SiO2 aerogels. J Aeronaut Mater 19(4):38–43
Deng ZS, Wei JD, Wang J, Shen J, Zhou B, Chen LY (1999) Structure and thermal properties of SiO2 aerogels. J Mater Eng 12:23–25
Deng ZS, Wei JD, Wang J, Shen J, Zhou B, Bao YP, Chen LY (2000) Silica aerogel prepared from polyethoxydisiloxanes. Chin J Funct Mater 3:296–298
Guo YZ, Shen J, Wang J (2001) Carbon aerogels dried at ambient conditions. Chin N Carbon Mater 16(3):55–57
Shen J, Zhou B, Wu GM, Deng ZS, Ni XY, Wang J (2002) Preparation and investigation of nanoporous super thermal insulation: silica aerogels. Chin J Process Eng 2(4):341–345
Shen J, Wang GQ, Wang J, Deng ZS (2004) Preparation of silica aerogels and study of surface modification and thermal conductivity. J Tongji Univ: Nat Sci Ed 32(8):1106–1110
Zhang ZH, Ni XY, Chen SW, Zhou B, Shen J, Wu GM, Wang XL, Wu YH (2005) Ambient pressure preparation, surface structure and adsorption properties of silica aerogels. At Energy Sci Techno 39(6):498–502
Zhang ZH, Ni XY, Shen J, Yang MX (2005) Hydrophobic silica aerogels prepared with ambient pressure drying and its adsorption properties. J Tongji Univ: Nat Sci Ed 33(12):1641–1645
Shen J, Wang JC, Ni XY, Wang B, Wang XD, Zhang ZH (2009) Preparation of silica aerogels with non-ionic exchange water glass. J Funct Mater 40(1):149–151+158
Zu GQ, Shen J, Zhou LP, Wang WQ, Lian Y, Zhang ZH (2014) Preparation mechanical properties and thermal properties of elastic aerogels. J Inorg Mater 29(4):417–422
Shen J, Li Q, Zhou B, Wang J, Chen LY (1997) SiO2-GeO2 binary aerogels with ultralow density. J Non-Cryst Solids 220(1):102–106. https://doi.org/10.1016/S0022-3093(97)00226-3
Sun HY, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25(18):2554–2560. https://doi.org/10.1002/adma.201204576
Shen J, Wang J, Wu X, Gan LH, Chen LW (1994) Study on structure controlling of silica aerogels. Mater Sci Technol 2(4):87–93
Shen J, Wang J (1995) The Structural investigation of silica aerogels via small angle X-Ray scattering. Chin J Light Scattering 7(2, 3):241–242
Shen J, Wang J, Wu X, Wang JH (1996) The structure investigation of silica aerogels via small angle X-ray scattering. Chin J Inorg Mater 11(4):753–756
Shen J, Wang J, Wu X (1994) Silica aerogels and their fractal structure. Chin Phys 8:483–487
Shen J, Wang J, Wu X (1996) Nanostructure of silica aerogels and their fractal phenomena. J Tongji Univ (Nat Sci Ed) 24(1):76–81
Shen J, Wang J, Wu X (1996) Study on fractal structure of porous silica: aerogels and xerogels. Chin Acta Phys Sin-Ch Ed 45(9):81–85
Wang J, Shen J, Wu W, Zhou B (1994) Nanostructural investigation of silica aerogels. MRS Symp Proc 351:183–188. https://doi.org/10.1557/PROC-351-183
Wang J, Shen J, Zhou B, Wu X (1996) SAXS investigation of silica aerogels derived from TEOS. Nanostruct Mater 7(6):699–708. https://doi.org/10.1016/0965-9773(96)00041-4
Deng ZS, Wang J, Wei JD, Shen J, Zhou B, Chen LY (2000) Physical properties of silica aerogels prepared with polyethoxydisiloxanes. J Solgel Sci Technol 19(1):677–680. https://doi.org/10.1023/A:1008754504788
Shen J, Hou JQ, Guo YZ, Xue H, Wu GM, Zhou B (2005) Microstructure control of RF and carbon aerogels prepared by sol-gel process. J Solgel Sci Technol 36(2):131–136. https://doi.org/10.1007/s10971-005-5284-3
Qin RX, Shen J, Wu GM, Zhou B, Wang Q, Ni XY, Guo YZ (2004) Preparation of carbon aerogels by conventional drying and their control in microstructure. Chin J Process Eng 4(05):429–433
Wu DC, Zhang ST, Fu RW (2003) Progress in study of carbon aerogels and precursor organic aerogels. Chin Ion- Exch Adsorpt 19(5):473–480
Li WC, Guo SC, Zhu YD (2000) An investigation on carbonizing process of m-cresol and formaldehyde aerogels. Chin Carbon Tech 1:9–11
Zu GQ, Shen J, Ni XY, Li YN (2011) Preparation of elastic aerogels at ambient pressure. Funct Mater 42(1):151–154
Ni XY, Li Y, Zhang ZH, Shen J, Zhou B, Wu GM (2010) Surface modification and adsorption properties of SiO2 nanoporous aerogels. Rare Met Mat Eng 39(S2):22–25
Qiang YX, Cheng Y (2019) Preparation and modification of silica aerogel from composite silicon source. Chin J Xian Univ Posts Telecom 24(4):75–80
Yao DJ, Zhang JC, Niu LW, Zhang DS, Wu H, Chen S, Dong HN, He FX (2020) Rapid preparation of hydrophobic silica aerogels by repeated pressure lifting. Chinese Patent CN110902690A
Zhu JJ, Jiang DL, Wei W, Xie JM (2013) Analysis on transmittance of hydrophobic silica aerogels prepared at ambient pressure. Chin Inorg Chem Ind 45(12):21–23
Liu GW, Zhou B, Ni XY, Zu GQ (2013) Effect of thermal process on microstructure and physical properties of silica aerogels. Chin J Tongji Univ: Nat Sci Ed 41(7):1078–1083
Cui S, Lin BL, Liu Y, Shen XD, Liu XY, Han GF (2011) Preparation and adsorption property of hydrophobic SiO2 aerogels modified by methyl triethoxysilane. J Wuhan Univ Technol-Mat Sci Ed 26(6):1079–1083
Lin BL, Cui S, Liu XY, Liu Y, Shen XD, Han GF (2013) Preparation and adsorption property of phenyltriethoxysilane modified SiO2 aerogel. J Wuhan Univ Technol-Mat Sci Ed 28(5):916–920
Liu ZL, Rong CG (2020) A method for preparing super hydrophobic silica aerogels at ambient pressure. Chinese Patent CN109850909B
Li Z, Huang SQ, Wu XX, Liu Q (2020) A controllable hydrophobic silica bulk aerogel and its preparation method. Chinese Patent CN111392734A
Shen J, Wang J, Zhai JW, Guo YZ, Wu GM, Zhou B, Ni XY (2004) Carbon aerogel films synthesized at ambient conditions. J Solgel Sci Technol 31(1–3):209–213. https://doi.org/10.1023/B:JSST.0000047989.39431.d5
Liu XC, Yuan L, Wang CY, Fu ZB, Feng H, Tang YJ (2012) Preparation of high specific surface area carbon aerogels by conventional drying and their performance in microstructure. Chin High Power Laser Part Beams 24(2):370–374
Liu NP, Shen J, Liu D (2013) Activated high specific surface area carbon aerogels for EDLCs. Micropor Mesopor Mat 167:176–181. https://doi.org/10.1016/j.micromeso.2012.09.009
Sui ZY, Meng YN, Xiao PW, Zhao ZQ, Wei ZX, Han BH (2015) Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl Mater Interfaces 7(3):1431–1438. https://doi.org/10.1021/am5042065
Shen J, Xue H, Wu GM, Zhou B (2007) Microstructure control of carbon aerogels. Chin J Tongji Univ: Nat Sci Ed 35(6):779–782
Hou JQ, Shen J, Xue H, Wu GM, Zhou B, Ni XY (2005) Preparation of high specific surface area carbon aerogels via CO2 activation. Chin J Process Eng 5(6):651–653
Chang Y-M, Wu C-Y, Wu P-W (2013) Synthesis of large surface area carbon xerogels for electrochemical double layer capacitors. J Power Sources 223:147–154. https://doi.org/10.1016/j.jpowsour.2012.09.066
Yang HM, Wang S, Du X, Li SB, Liu JY (2020) Study on adsorption of methylene from water by KOH-activated carbon aerogel. Chin New Chem Mater 48(3):213–216+221
Liu D, Shen J, Li YJ, Liu NP, Liu B (2102) Pore structures of carbon aerogels and their effects on electrochemical supercapacitor performance. Acta Phys Chim Sin 28(4):843–849
Wu XL, Zhang ZH, Liu D, Guan DY, Liu NP, Ye YF, Shen J (2016) Preparation of carbon aerogels and its application in electrochemical supercapacitors. Chin Energy Sto Sci Tech 5(6):828–833
Chen Y, Han YM, Fan DB, Yan TT, Li GY, Wang SQ (2019) Carbon aerogel based on biomass cellulose. Chin Sci Silvae Sin 55(10):88–98
Wang LN, Ma XJ (2021) Preparation and application progress of plant cellulose-based carbon aerogel. Chin Biomass Chem Eng 55(1):83–90
Cheng Z, Li J, Wang B, Zeng J, Xu J, Gao W, Zhu S, Hu F, Dong J, Chen K (2020) Scalable and robust bacterial cellulose carbon aerogels as reusable absorbents for high-efficiency oil/water separation. ACS Appl Bio Mater 3(11):7483–7491. https://doi.org/10.1021/acsabm.0c00708
Li ZY, Jia ZG, Ni T, Li SBA (2017) Adsorption of methylene blue on natural cotton based flexible carbon fiber aerogels activated by novel air-limited carbonization method. J Mol Liq 242:747–756. https://doi.org/10.1016/j.molliq.2017.07.062
Wang Y, Zhu L, Zhu FY, You LJ, Shen XQ, Li SJ (2017) Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J Taiwan Inst Chem Eng 78:351–358. https://doi.org/10.1016/j.jtice.2017.06.037
Lei E, Li W, Ma CH, Xu Z, Liu SX (2018) CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Appl Surf Sci 457:477–486. https://doi.org/10.1016/j.apsusc.2018.07.001
Zhang JL (2018) Preparation of graphene-based gels and its application in supercapacitors. Master, Qingdao University of Science & Technology
Hu H (2014) Controllable preparation, modification and properties of graphene aerogels. Ph.D, Dalian University of Technology
Xu Z, Sun HY, Gao C (2013) Perspective: Graphene aerogel goes to superelasticity and ultraflyweight. APL Mater 1(3):3. https://doi.org/10.1063/1.4820426
Xu YX, Sheng KX, Li C, Shi GQ (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330. https://doi.org/10.1021/nn101187z
Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25(15):2219–2223. https://doi.org/10.1002/adma.201204530
Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428. https://doi.org/10.1038/nmat3001
Qiu L, Liu JZ, Chang SLY, Wu YZ, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:7. https://doi.org/10.1038/ncomms2251
Yue Y, Liu N, Ma YA, Wang SL, Liu WJ, Luo C, Zhang H, Cheng F, Rao JY, Hu XK, Su J, Gao YH (2018) Highly self-healable 3D microsupercapacitor with MXene-Graphene composite aerogel. ACS Nano 12(5):4224–4232. https://doi.org/10.1021/acsnano.7b07528
Fesmire JE (2006) Aerogel insulation systems for space launch applications. Cryogenics 46(2–3):111–117. https://doi.org/10.1016/j.cryogenics.2005.11.007
Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300(1):279–285. https://doi.org/10.1016/j.jcis.2006.03.044
Hu ZJ, Zhou JJ, Chen XH, Sun CC (2009) Research progress in the study of alumina aerogels. B Chin Ceram Soc 28(5):1002–1007
Ai SF, Sun Y, Lei YF, Shen YX, Gong X (2019) Characterization of the high-temperature resistance performance of silica aerogels with different densities. Chin J B Univ Chem Technol (Nat Sci Ed) 46(1):63–68
Cai HF, Jiang YG, Feng J, Chen Q, Zhang SZ, Li LJ, Feng JZ (2020) Nanostructure evolution of silica aerogels under rapid heating from 600 degrees C to 1300 degrees C via in-situ TEM observation. Ceram Int 46(8):12489–12498. https://doi.org/10.1016/j.ceramint.2020.02.011
Poco JF, Satcher JH, Hrubesh LW (2001) Synthesis of high porosity, monolithic alumina aerogels. J Non-Cryst Solids 285(1-3):57–63. https://doi.org/10.1016/S0022-3093(01)00432-X
Yoldas BE (1975) Alumina gels that form porous transparent Al2O3. J Mater Sci 10(11):1856–1860. https://doi.org/10.1007/BF00754473
Gao QF, Zhang CR, Feng J, Wu W, Feng JZ, Jiang YG (2008) Preparation of low density, monolithic alumina aerogels. Chin J Inorg Chem 24(9):1456–1460
Pakharukova VP, Shalygin AS, Gerasimov EY, Tsybulya SV, Martyanov ON (2016) Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment. J Solid State Chem 233:294–302. https://doi.org/10.1016/j.jssc.2015.11.007
Bararpour ST, Karami D, Mahinpey N (2019) Investigation of the effect of alumina-aerogel support on the CO2 capture performance of K2CO3. Fuel 242:124–132. https://doi.org/10.1016/j.fuel.2018.12.123
Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mat 17(2):395–401. https://doi.org/10.1021/cm048800m
Hurwitz FI, Gallagher M, Olin TC, Shave MK, Ittes MA, Olafson KN, Fields MG, Rogers RB, Guo H (2014) Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance. Int J Appl Glass Sci 5(3):276–286. https://doi.org/10.1111/ijag.12070
Yorov KE, Yapryntsev AD, Baranchikov AE, Khamova TV, Straumal EA, Lermontov SA, Ivanov VK (2018) Luminescent alumina-based aerogels modified with tris (8-hydroxyquinolinato) aluminum. J Solgel Sci Technol 86(2):400–409. https://doi.org/10.1007/s10971-018-4647-5
Wen SY, Ren HB, Zhu JY, Bi YT, Zhang L (2019) Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance. J Porous Mat 26(4):1027–1034. https://doi.org/10.1007/s10934-018-0700-6
Zu GQ, Shen J, Zou LP, Wang WQ, Lian Y, Zhang ZH, Du A (2013) Nanoengineering super heat-resistant, strong alumina aerogels. Chem Mat 25(23):4757–4764. https://doi.org/10.1021/cm402900y
Gao QF, Zhang CR, Feng J, Wu W, Feng JZ, Jiang YG (2008) Preparation and thermal performance of alumina aerogel insulation composites. Chin J Nat Univ Def Tech 30(04):39–42
Zhou JJ, Chen XH, Hu ZJ, Sun CC, Chen HK, Song HH (2010) Effect of heat treament on microstructure of monolithic alumina aerogels. Chin Aerosp Mater Technol 40(02):51–54
Xu ZJ, Gan LH, Pang YC, Chen LW (2005) Preparation of Al2O3 bulk aerogels by non-supercritical fluid drying technology. Chin Acta Phys Chim Sin 21(2):221–224
Zhong L, Chen XH, Hu ZJ, Song HH, Sun CC (2012) Progressive State on preparation method of zirconia aerogels research. Chin Aeros Mater Technol 42(2):24–29
Zhao ZQ, Chen DR, Jiao XL (2007) Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: Comparison of aerogels prepared by freeze-drying and supercritical CO2(l) extraction. J Phys Chem C 111(50):18738–18743. https://doi.org/10.1021/jp075150b
Wu ZG, Zhao YX, Xu LP, Liu DS (2003) Preparation of zirconia aerogel by heating of alcohol-aqueous salt solution. J Non-Cryst Solids 330(1-3):274–277. https://doi.org/10.1016/j.jnoncrysol.2003.08.049
Gash AE, Tillotson TM, Satcher JH, Hrubesh LW, Simpson RL (2001) New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285(1-3):22–28. https://doi.org/10.1016/S0022-3093(01)00427-6
Du A, Zhou B, Shen J, Gui JY, Zhong YH, Liu CZ, Zhang ZH, Wu GM (2011) A versatile sol-gel route to monolithic oxidic gels via polyacrylic acid template. N J Chem 35(5):1096–1102. https://doi.org/10.1039/C0NJ00909A
Suh DJ, Park TJ (1996) Sol-gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mat 8(2):509–513. https://doi.org/10.1021/cm950407g
Sui RH, Rizkalla AS, Charpentier PA (2006) Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO2. Langmuir 22(9):4390–4396. https://doi.org/10.1021/la053513y
Bai LH, Ma HX, Gao CG, Zhao YX (2006) ZrO2 Aerogel prepared by heating of alcohol aqueous salt solution. J Mol Catal 20(6):539–544
Guo XZ, Yan LQ, Yang H, Li J, Li CY, Cai XB (2011) Synthesis of zirconia aerogels by ambient pressure drying with propylene oxide addition. Chin Acta Phys Chim Sin 27(10):2478–2484
Dong LH, Han L, Tian L, Zhang J, Zhang HJ (2020) Research progress of preparation and photocatalytic performance of TiO2 aerogel. B Chin Ceram Soc 39(1):290–302
Sun S (2013) Study on synthesis and surface modification of TiO2 aerogels by ambient prussure drying. Master, Zhejiang university
Li XW, Lu PP, Yao KF, Zhao HL, Zhu XH (2012) Preparation of monolithic TiO2 aerogel via ambient drying and photocatalytic degradation of oily wastewater. J Inorg Mater 27(11):1153–1158
Lu B, Song M, Lu H, Zhou Q, Wei QQ (2012) TiO2 aerogels prepared by ambient pressure drying. Chin Acta Mater Compos Sin 29(3):127–133
Zhao LL, Wang SX, Wang YY (2015) Study of texture and structure of TiO2 aerogel prepared by ambient pressure drying and sol-gel method. Chin Ind Catal 23(01):19–25
National standard of the People’s Republic of China: GB/T 4272-2008 “General principles for thermal insulation technique of equipment and pipes”
Ye YF, Hu XH (2016) A pH-sensitive injectable nanoparticle composite hydrogel for anticancer drug delivery. J Nanomater 2016(57):1–8. https://doi.org/10.1155/2016/9816461
Shen J, Lian Y, Zu GQ, Zou LP, Wang WQ, Zhang ZH (2015) Aerogel low-cost preparation and its application in the field of building insulation. J Funct Mater 07:07001–07007
Wei T-Y, Lu S-Y, Chang Y-C (2009) A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities. J Phys Chem C 113(17):7424–7428. https://doi.org/10.1021/jp900380q
Zhang JJ, Zhong Y, Shen XD, Cui S, Kong Y, Ji LL, Li BY (2014) Properties and characterization of SiO2 monolithic aerogels doped with Yttrium. Chin J Inorg Chem 30(04):793–799
Wu XD, Shao GF, Cui S, Wang L, Shen XD (2016) Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram Int 42(1):874–882. https://doi.org/10.1016/j.ceramint.2015.09.012
Kong Y, Zhong Y, Shen XD, Hu DD, Cui S, Teng KM, Zhang JJ (2012) Preparation of monolithic C/SiO2 composite aerogels with low density. J Nanjing U Techno: Nat Sci Ed 34(4):6–10
Feng J, Feng J, Jiang Y, Zhang C (2011) Ultralow density carbon aerogels with low thermal conductivity up to 2000 degrees C. Mater Lett 65(23–24):3454–3456. https://doi.org/10.1016/j.matlet.2011.07.114
Kong Y, Zhong Y, Shen XD, Gu LH, Cui S, Yang M (2013) Synthesis of monolithic mesoporous silicon carbide from resorcinol-formaldehyde/silica composites. Mater Lett 99:108–110. https://doi.org/10.1016/j.matlet.2013.02.047
Ding YD, Liu CH, Wang F, Ye ST, Jia YF, Ban GD, Lin R (2016) Research progress in preparation and application of silica aerogel coatings. Chin Sur Tech 45(6):153–160
Zhang X, Ye JF, Zhou HB, Li SL, Feng T (2013) Experimental research on new wall thermal insulation material. B Chin Ceram Soc 32(5):982–986
Xu JZ (2020) A special aerogel infrared health coating for floor heating and its preparation method. Chinese Patent CN111410858A
Xu JZ (2020) A fire-resistant aerogel thermal insulation coating and its preparation method. Chinese Patent CN111410552A
Zhu W, Jiang X, Liu F, You F, Yao C (2020) Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and its adsorption property of methyl orange. Polymers 12(9):1–16. https://doi.org/10.3390/polym12092169
Wang QB, Luan ZQ, Li Q, Li L, Tang TF (2018) Progress in application of aerogels as adsorbents for gas purification. Chin Mater Rev 32(13):2214–2222+2240
Cui S, Cheng WW, Shen XD, Fan MH, Russell A, Wu ZW, Yi XB (2011) Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy Environ Sci 4(6):2070–2074. https://doi.org/10.1039/C0EE00442A
Zhang ZH, Ni XY, Shen J, Wu GM, Zhou B (2005) Effect of surface characteristics of silica aerogels on adsorption properties. Chin Mater Rev 19(07):115–117
Liu Q, Zhang ZH, Liu Y, Wang XD, Shen J (2020) Study on the adsorption performance of silica aerogel on volatile organic compounds. Chin Chem B 83(6):552–556+507
Zhuo H, Hu YJ, Tong X, Zhong LX, Peng XW, Sun RC (2016) Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind Crop Prod 87:229–235. https://doi.org/10.1016/j.indcrop.2016.04.041
Yun S, Kim H, Lee H, Park HS (2015) Three-dimensionally macroporous, Si and N-incorporated graphene aerogels for gas adsorbents. Mater Express 5(5):463–469. https://doi.org/10.1166/mex.2015.1261
Wu DC, Liu XF, Fu RW (2005) The adsorption of organic vapours on carbon aerogels and their precursor organic aerogels. Chin N. Carbon Mater 20(4):305–311
Wu DC, Sun ZQ, Fu RW (2006) Structure and adsorption properties of activated carbon aerogels. J Appl Polym Sci 99(5):2263–2267. https://doi.org/10.1002/app.22764
Xiao ZH (2014) Research on adsorption of heavy metal Ions of carbon aerogels and their Modified materials. Ph.D, Hefei University of Technology
Zhao GX, Huang XB, Tang ZW, Huang QF, Niu FL, Wang XK (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9(26):3562–3582. https://doi.org/10.1039/C8PY00484F
Zhang ZH, Ni XY, Chen SW, Zhou B, Shen J, Wu GM (2004) Study on atmospheric preparation and adsorption characteristics of SiO2 Aerogel. The 8th National Academic Exchange Conference on Nuclear Target Technology
Han HK, Wei W, Jiang ZF, Lu JW, Zhu JJ, Xie JM (2016) Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloid Surf A-Physicochem Eng Asp 509:539–549. https://doi.org/10.1016/j.colsurfa.2016.09.056
Cui S, Liu XT, Liu Y, Shen XD, Lin BL, Han GF, Wu ZW (2011) Adsorption properties of nitrobenzene in wastewater with silica aerogels. Sci China Ser 41(2):229–233. https://doi.org/10.1007/s11431-010-4047-8
Wei W, Lu X, Han HK, Zhu JJ, Xie JM (2016) Adsorption capacity of wintermelon peel-derived carbon aerogel for Pb(II) wastewater. Chin Appl Chem Ind 45(10):1828–1831
Wang YP, Liu ZY, Li HJ, Sun HJ, Wang J, Zhang LY (2021) Carbon aerogels and its application for wastewater treatment. Chin Ind Water Treat 41(07):34–39
Kong QP, Wei CH, Preis S, Hu Y, Wang F (2018) Facile preparation of nitrogen and sulfur co-doped graphene-based aerogel for simultaneous removal of Cd2+ and organic dyes. Environ Sci Pollut Res 25(21):21164–21175. https://doi.org/10.1007/s11356-018-2195-8
Pan LH, Wang ZQ, Yang Q, Huang RY (2018) Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 8(11):957. https://doi.org/10.3390/nano8110957
Jing ZF, Ding JC, Zhang T, Yang DY, Qiu FX, Chen QY, Xu JC (2019) Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod Process 115:134–142. https://doi.org/10.1016/j.fbp.2019.03.010
Ge Y, Zhang T, Zhou B, Wang HQ, Zhang ZH, Shen J, Du A (2018) Nanostructured resorcinol-formaldehyde ink for 3D direct writing. J Mater Res 33(14):2052–2061. https://doi.org/10.1557/jmr.2018.104
Wei W, Sun W, Han HK, Ci MJ, Zhu JJ, Xie JM (2016) Preparation of carbon from watermelon peel and its adsorption properties. Chin Environ Prot Chem Ind 36(4):386–389
Wang X, Lu LL, Yu ZL, Xu XW, Zheng YR, Yu SH (2015) Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties. Angew Chem-Int Ed 54(8):2397–2401. https://doi.org/10.1002/anie.201410668
Sun W, Du A, Zhou B, Shen J, Huang S, Tang J (2016) Ultra-low-density GNS/CA composite aerogels with ultra-high specific surface for dye removal. J Solgel Sci Technol 80(1):68–76
Yang W, Chen SZ, Xue JJ, Hu XF, Xia XD, Lin WM (2015) Effects of different carbon aerogel conductive agents on performance of Li-MnO2 battery. J South China Univ Techno: Nat Sci Ed 43(6):37–41
Yang X, Wei C, Zhang G (2016) Activated carbon aerogels with developed mesoporosity as high-rate anodes in lithium-ion batteries. J Mater Sci 51(11):5565–5571. https://doi.org/10.1007/s10853-016-9861-3
Luo DW, Lin F, Luan CL, Chen JH, Chen JM, Li X (2017) Synthesis and electrochemical performance of carbon aerogels/Fe2O3 Composite by hydrothermal/solvthermal method as an anode material for Li-ion batteries. Chin J Synth cryst 46(4):733–738
Huang ST, Suo H, Cui S, Yu KW, Su H, Zheng HJ (2018) Research development of carbon aerogels in electrochemical fields. Chin Mater Rev 32(31):10–15+36
Tang ZW, Jiang JL, Liu SH, Chen LY, Liu RL, Zheng BN, Fu RW, Wu DC (2017) Polyaniline-coated activated carbon aerogel/sulfur composite for high-performance lithium-sulfur battery. Nanoscale Res Lett 12(617):1–9. https://doi.org/10.1186/s11671-017-2372-6
Ding ZQ, Li XL, Zhang P, Yu JJ, Hua Y (2017) Enhanced electrochemical performance of sulfur on Y2O3-modified porous carbon aerogels for high performance lithium-sulfur batteries. N J Chem 41(21):12726–12735. https://doi.org/10.1039/C7NJ02714A
Xin X (2019) Suzhou Institute of Nano-Tech and Nano-Tech and Nano-Bionics(SINANO) has made significant progress in the field of graphene aerogels. New Chem Mater 47 (7):281
Lei Q, Song HH, Zhou D, Zhang S, Chen XH (2015) Morphology control and supercapacitor performance of resorcinol-formaldehyde-based carbon particles upon Ni loading in an inverse emulsion system. RSC Adv 5(96):78526–78533. https://doi.org/10.1039/C5RA14430B
Li XL, Wu YH, Xiao ZH, Chen F (2013) In-situ preparation of carbon aerogel/nickel oxide composite and its supercapacitance. J Chin Ceram Soc 41(2):145–148
Fu ZB, Yuan L, Jiao XL, Yang X, Zhang HQ, Wang CY (2013) Preparation and electrochemical performance of carbon aerogels dried at ambient pressure. Chin High Power Laser Part Beams 25(12):3235–3238
Liu D, Shen J, Liu NP, Yang HY, Du A (2013) Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors. Electrochim Acta 89:571–576. https://doi.org/10.1016/j.electacta.2012.11.033
DeSario PA, Pietron JJ, Dunkelberger A, Brintlinger TH, Baturina O, Stroud RM, Owrutsky JC, Rolison DR (2017) Plasmonic aerogels as a three-dimensional nanoscale platform for solar fuel photocatalysis. Langmuir 33(37):9444–9454. https://doi.org/10.1021/acs.langmuir.7b01117
Wei X, Cai HD, Feng QG, Liu Z, Ma DC, Chen K, Huang Y (2018) Synthesis of co-existing phases Sn-TiO2 aerogel by ultrasonic-assisted sol-gel method without calcination. Mater Lett 228:379–383. https://doi.org/10.1016/j.matlet.2018.06.050
Popa M, Indrea E, Pascuta P, Cosoveanu V, Popescu IC, Danciu V (2010) Fe, Ce and Cu influence on morpho-structural and photocatalytic properties of TiO2 aerogels. Rev Roum Chim 55(7):369–375
Cui SC, Li R, Ma WS, Li MM, Cui JX, Pei JZ (2018) Preparation, photocatalytic properties investigation and degradation rate study on nano-TiO2 aerogels doped with Fe3+ for automobile emission purification. Mater Res Express 5(11):14. 0000-0002-1994-5819
Shao X, Lu WC, Zhang R, Pan F (2013) Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation. Sci Rep 3(1):3018. https://doi.org/10.1038/srep03018
Liu ML, Xu ZW, Zhao HB (2017) A study on photocatalytic water splitting of plasma-induced nitrogen doped TiO2. Chin Adv N Renew Energ 5(2):91–96
Popa M, Macovei D, Indrea E, Mercioniu I, Popescu IC, Danciu V (2010) Synthesis and structural characteristics of nitrogen doped TiO2 aerogels. Microporous Mesoporous Mater 132(1–2):80–86. https://doi.org/10.1016/j.micromeso.2009.12.024
Fort CI, Pap Z, Indrea E, Baia L, Danciu V, Popa M (2014) Pt/N-TiO2 aerogel composites used for hydrogen production via photocatalysis process. Catal Lett 144(11):1955–1961. https://doi.org/10.1007/s10562-014-1353-y
Zheng RR, Li TT, Yu H (2018) Construction of indium and cerium codoped ordered mesoporous TiO2 aerogel composite material and its high photocatalytic activity. Glob Chall 2(5–6):8. https://doi.org/10.1002/gch2.201700118
Sadrieyeh S, Malekfar R (2018) Photocatalytic performance of plasmonic Au/Ag-TiO2 aerogel nanocomposites. J Non-Cryst Solids 489:33–39. https://doi.org/10.1016/j.jnoncrysol.2018.03.020
Acknowledgements
This work was supported by the National Key Research and Development Program of China (2017YFA0204600) and the National Natural Science Foundation of China (51072137).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shen, J., Zhang, X. Recent progress and applications of aerogels in China. J Sol-Gel Sci Technol 106, 290–318 (2023). https://doi.org/10.1007/s10971-021-05639-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10971-021-05639-2