Skip to main content
Log in

Mechanical properties of ordered mesoporous oxides thin films

  • Invited Review: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ordered mesoporous oxides obtained by combining sol-gel and self-assembly exhibit high surface area, controlled porosity, monodisperse pores in the mesoscale and amorphous or crystalline inorganic framework. In the particular form of thin films, they have been widely studied for a diversity of applications. In this context, the mechanical stability of devices based on mesoporous thin films (MTF) is one of the critical factors to consider for assuring robustness and reliability. Measuring and understanding the mechanical and tribological behavior of these designed materials are therefore issues of crucial importance when large-scale applications are pursued, such as photovoltaic devices, catalysis, sensors, microfluidic systems, biocompatible films and microelectronics. In this review, two aspects are discussed and critically evaluated: the mechanical properties of ordered MTF and the experimental techniques used to measure them. The relationship between hardness and elastic modulus with structural features (porosity, pore ordering, crystalline phase, among others) are analyzed for several mesoporous systems. Tribological and fractomechanical features are also assessed. Besides, the experimental techniques dedicated to measure the mechanical properties of porous thin film, including surface acoustic waves, Brillouin light scattering, ellipsometric porosimetry, X-Rays and neutron-based techniques and nanoindentation are described in detail, discussing the possibilities and limitations of these techniques applied to a diversity of systems.

In this review, the mechanical properties of ordered mesoporous thin films and the experimental techniques used to measure them are presented and discussed. The relationship between hardness (H) and elastic modulus (E) with structural features as the porosity (P), among others, are analyzed for several mesoporous systems.

Highlights

  • Several techniques can be used to evaluate the mechanical behavior of mesoporous thin films.

  • Ordered mesoporous films are excellent systems to correlate structure and mechanical properties.

  • For mesoporous films, elastic modulus and hardness values decrease as porosity increases.

  • For titania films, the crystalline phase and the porosity determine their mechanical strength.

  • Mechanical properties of hybrid films can be designed by changing the composition and porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity†. Chem Mater 20(3):682–737. https://doi.org/10.1021/cm702100t

    Article  CAS  Google Scholar 

  2. Coakley KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl Phys Lett 83(16):3380–3382. https://doi.org/10.1063/1.1616197

    Article  CAS  Google Scholar 

  3. Violi IL, Perez MD, Fuertes MC, Soler-Illia GJAA (2012) Highly ordered, accessible and nanocrystalline mesoporous TiO2 thin films on transparent conductive substrates. ACS Appl Mater Interfaces 4(8):4320–4330. https://doi.org/10.1021/am300990p

    Article  CAS  Google Scholar 

  4. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97(6):2373–2420. https://doi.org/10.1021/cr960406n

    Article  CAS  Google Scholar 

  5. Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Kokkoli E, Terasaki O, Thompson RW, Tsapatsis M, Vlachos DG (2003) Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300(5618):456–460. https://doi.org/10.1126/science.1082169

    Article  CAS  Google Scholar 

  6. Makowski P, Deschanels X, Grandjean A, Meyer D, Toquer G, Goettmann F (2012) Mesoporous materials in the field of nuclear industry: applications and perspectives. N J Chem 36(3):531–541. https://doi.org/10.1039/C1NJ20703B

    Article  CAS  Google Scholar 

  7. Stein A (2003) Advances in microporous and mesoporous solids—highlights of recent progress. Adv Mater 15(10):763–775. https://doi.org/10.1002/adma.200300007

    Article  CAS  Google Scholar 

  8. Li X, Song L, Vogt BD (2007) Tuning mechanical properties of mesoporous silicas using associating homopolymers/block copolymer blends as templates. J Phys Chem C 112(1):53–60. https://doi.org/10.1021/jp0762727

    Article  CAS  Google Scholar 

  9. Lebeau B, Innocenzi P (2011) Hybrid materials for optics and photonics. Chem Soc Rev 40(2):886–906. https://doi.org/10.1039/C0CS00106F

    Article  CAS  Google Scholar 

  10. Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42(9):4198–4216. https://doi.org/10.1039/c3cs35377j

    Article  CAS  Google Scholar 

  11. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  CAS  Google Scholar 

  12. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  13. Okada K, Asakura G, Yamamoto T, Tokudome Y, Takahashi M (2019) Anisotropic and reversible deformation of mesopores and mesostructures in silica-based films under mechanical stimuli toward adaptive optical components. ACS Appl Nano Mater 2(4):2377–2382. https://doi.org/10.1021/acsanm.9b00269

    Article  CAS  Google Scholar 

  14. Harmankaya N, Karlsson J, Palmquist A, Halvarsson M, Igawa K, Andersson M, Tengvall P (2013) Raloxifene and alendronate containing thin mesoporous titanium oxide films improve implant fixation to bone. Acta Biomaterialia 9(6):7064–7073. https://doi.org/10.1016/j.actbio.2013.02.040

    Article  CAS  Google Scholar 

  15. Suárez S, Arconada N, Castro Y, Coronado JM, Portela R, Durán A, Sánchez B (2011) Photocatalytic degradation of TCE in dry and wet air conditions with TiO2 porous thin films. Appl Catalysis B: Environ 108–109(0):14–21. https://doi.org/10.1016/j.apcatb.2011.07.027

    Article  CAS  Google Scholar 

  16. Soler-Illia GJAA, Angelomé PC, Fuertes MC, Grosso D, Boissiere C (2012) Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 4(8):2549–2566. https://doi.org/10.1039/c2nr11817c

    Article  CAS  Google Scholar 

  17. Zelcer A, Soler-Illia GJAA (2013) One-step preparation of UV transparent highly ordered mesoporous zirconia thin films. J Mater Chem C 1(7):1359–1367. https://doi.org/10.1039/C2TC00319H

    Article  CAS  Google Scholar 

  18. Violi IL, Zelcer A, Bruno MM, Luca V, Soler-Illia GJAA (2015) Gold nanoparticles supported in zirconia–ceria mesoporous thin films: a highly active reusable heterogeneous nanocatalyst. ACS Appl Mater Interfaces 7(2):1114–1121. https://doi.org/10.1021/am5065188

    Article  CAS  Google Scholar 

  19. Kidchob T, Malfatti L, Serra F, Falcaro P, Enzo S, Innocenzi P (2007) Hafnia sol-gel films synthesized from HfCl4: changes of structure and properties with the firing temperature. J Sol-Gel Sci Technol 42(1):89–93. https://doi.org/10.1007/s10971-006-1511-9

    Article  CAS  Google Scholar 

  20. Choi JH, Mao Y, Chang JP (2011) Development of hafnium based high-k materials—A review. Mater Sci Eng: R: Reports 72(6):97–136. https://doi.org/10.1016/j.mser.2010.12.001

    Article  CAS  Google Scholar 

  21. Volksen W, Lionti K, Magbitang T, Dubois G (2014) Hybrid low dielectric constant thin films for microelectronics. Scripta Materialia 74:19–24. https://doi.org/10.1016/j.scriptamat.2013.05.025

    Article  CAS  Google Scholar 

  22. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42(9):4098–4140. https://doi.org/10.1039/c2cs35322a

    Article  CAS  Google Scholar 

  23. Fan H, Hartshorn C, Buchheit T, Tallant D, Assink R, Simpson R, Kissel DJ, Lacks DJ, Torquato S, Brinker CJ (2007) Modulus-density scaling behaviour and framework architecture of nanoporous self-assembled silicas. Nat Mater 6 (6):418-423. http://www.nature.com/nmat/journal/v6/n6/suppinfo/nmat1913_S1.html

  24. Tan JC, Cheetham AK (2011) Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem Soc Rev 40(2):1059–1080. https://doi.org/10.1039/C0CS00163E

    Article  CAS  Google Scholar 

  25. Broitman E (2016) Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribology Lett 65(1):23. https://doi.org/10.1007/s11249-016-0805-5

    Article  Google Scholar 

  26. Roy M (2013) Nanocomposite Films for Wear Resistance Applications. In: Roy M (ed) Surface Engineering for Enhanced Performance against Wear. Springer Vienna, pp 45-78. https://doi.org/10.1007/978-3-7091-0101-8_2

  27. Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 246(1-2):1–11. https://doi.org/10.1016/S0043-1648(00)00488-9

    Article  CAS  Google Scholar 

  28. Zhou W, Bailey S, Sooryakumar R, King S, Xu G, Mays E, Ege C, Bielefeld J (2011) Elastic properties of porous low-k dielectric nano-films. J Appl Phys 110(4):043520–043520. https://doi.org/10.1063/1.3624583

    Article  CAS  Google Scholar 

  29. Dubois G, Volksen W, Magbitang T, Sherwood M, Miller R, Gage D, Dauskardt R (2008) Superior mechanical properties of dense and porous organic/inorganic hybrid thin films. J Sol-Gel Sci Technol 48(1-2):187–193. https://doi.org/10.1007/s10971-008-1776-2

    Article  CAS  Google Scholar 

  30. Li R, Boudot M, Boissière C, Grosso D, Faustini M (2017) Suppressing structural colors of photocatalytic optical coatings on glass: the critical role of SiO2. ACS Appl Mater Interfaces 9(16):14093–14102. https://doi.org/10.1021/acsami.7b02233

    Article  CAS  Google Scholar 

  31. Tüysüz H, Schüth F (2012) Chapter Two - Ordered Mesoporous Materials as Catalysts. In: Gates BC, Jentoft FC (eds) Advances in Catalysis, 55. Academic Press, pp 127-239. https://doi.org/10.1016/B978-0-12-385516-9.00002-8

  32. Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15(35-36):3787–3811. https://doi.org/10.1039/B507309J

    Article  CAS  Google Scholar 

  33. Cop P, Hess K, Werner S, Meinusch R, Smarsly BM, Kozuka H (2019) Comparison of in-plane stress development in sol–gel- and nanoparticle-derived mesoporous metal oxide thin films. Langmuir 35(50):16427–16437. https://doi.org/10.1021/acs.langmuir.9b02455

    Article  CAS  Google Scholar 

  34. Latella BA, Ignat M, Barbé CJ, Cassidy DJ, Li H (2004) Cracking and decohesion of sol-gel hybrid coatings on metallic substrates. J Sol-Gel Sci Technol 31(1-3):143–149. https://doi.org/10.1023/B:JSST.0000047976.41395.51

    Article  CAS  Google Scholar 

  35. Cop P, Kitano S, Niinuma K, Smarsly BM, Kozuka H (2018) In-plane stress development in mesoporous thin films. Nanoscale 10(15):7002–7015. https://doi.org/10.1039/C8NR00793D

    Article  CAS  Google Scholar 

  36. Nakanishi S, Kojima R, Kozuka H (2020) In-plane stress development in sol–gel-derived titania and silica thin films on Si(100) substrates. J Sol-Gel Sci Technol 93(3):506–516. https://doi.org/10.1007/s10971-019-05212-y

    Article  CAS  Google Scholar 

  37. Xiao X, Hata N, Yamada K, Kikkawa T (2003) Mechanical properties of periodic porous silica low-k films determined by the twin-transducer surface acoustic wave technique. Rev Sci Instrum 74(10):4539–4541. https://doi.org/10.1063/1.1611615

    Article  CAS  Google Scholar 

  38. Pharr GM, Oliver WC (1992) Measurement of thin film mechanical properties using nanoindentation. MRS Bull 17(07):28–33. https://doi.org/10.1557/S0883769400041634

    Article  Google Scholar 

  39. Cheng Y-T, Cheng C-M (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng: R: Reports 44(4–5):91–149. https://doi.org/10.1016/j.mser.2004.05.001

    Article  Google Scholar 

  40. Fan H, Bentley HR, Kathan KR, Clem P, Lu Y, Brinker CJ (2001) Self-assembled aerogel-like low dielectric constant films. J Non-Crystalline Solids 285(1–3):79–83. https://doi.org/10.1016/S0022-3093(01)00435-5

    Article  CAS  Google Scholar 

  41. Vaz F, Carvalho S, Rebouta L, Silva MZ, Paúl A, Schneider D (2002) Young’s modulus of (Ti,Si)N films by surface acoustic waves and indentation techniques. Thin Solid Films 408(1–2):160–168. https://doi.org/10.1016/S0040-6090(02)00132-3

    Article  CAS  Google Scholar 

  42. Xiao X, Shan XM, Kayaba Y, Kohmura K, Tanaka H, Kikkawa T (2011) Young’s modulus evaluation by SAWs for porous silica low-k film with cesium doping. Microelectronic Eng 88(5):666–670. https://doi.org/10.1016/j.mee.2010.06.013

    Article  CAS  Google Scholar 

  43. Flannery CM, Murray C, Streiter I, Schulz SE (2001) Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves. Thin Solid Films 388(1–2):1–4. https://doi.org/10.1016/S0040-6090(01)00827-6

    Article  CAS  Google Scholar 

  44. Flannery CM, Wittkowski T, Jung K, Hillebrands B, Baklanov MR (2002) Critical properties of nanoporous low dielectric constant films revealed by Brillouin light scattering and surface acoustic wave spectroscopy. Appl Phys Lett 80(24):4594–4596. https://doi.org/10.1063/1.1478775

    Article  CAS  Google Scholar 

  45. Link A, Sooryakumar R, Bandhu RS, Antonelli GA (2006) Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films. J Appl Phys 100 (1):-. https://doi.org/10.1063/1.2209428

  46. Boissiere C, Grosso D, Lepoutre S, Nicole L, Bruneau AB, Sanchez C (2005) Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 21(26):12362–12371. https://doi.org/10.1021/la050981z

    Article  CAS  Google Scholar 

  47. Mogilnikov KP, Baklanov MR (2002) Determination of young’s modulus of porous low-k films by ellipsometric porosimetry. Electrochem Solid-State Lett 5(12):F29–F29. https://doi.org/10.1149/1.1517771

    Article  CAS  Google Scholar 

  48. Vanstreels K, Wu C, Gonzalez M, Schneider D, Gidley D, Verdonck P, Baklanov MR (2013) Effect of pore structure of nanometer scale porous films on the measured elastic modulus. Langmuir 29(38):12025–12035. https://doi.org/10.1021/la402383g

    Article  CAS  Google Scholar 

  49. Dourdain S, Britton DT, Reichert H, Gibaud A (2008) Determination of the elastic modulus of mesoporous silica thin films by x-ray reflectivity via the capillary condensation of water. Appl Phys Lett 93 (18):183108-183108-183103. https://doi.org/10.1063/1.2996412

  50. Sharifi P, Marmiroli B, Sartori B, Cacho-Nerin F, Keckes J, Amenitsch H, Paris O (2014) Humidity-driven deformation of ordered mesoporous silica films. Bioinspired Biomimetic Nanobiomater 3:183–190

    Article  Google Scholar 

  51. Gor GY, Huber P, Bernstein N (2017) Adsorption-induced deformation of nanoporous materials—A review. Appl Phys Rev 4(1):011303. https://doi.org/10.1063/1.4975001

    Article  CAS  Google Scholar 

  52. Rolley E, Garroum N, Grosman A (2017) Using capillary forces to determine the elastic properties of mesoporous materials. Phys Rev B 95(6):064106. https://doi.org/10.1103/PhysRevB.95.064106

    Article  Google Scholar 

  53. Fuertes MC, Colodrero S, Lozano G, González-Elipe AR, Grosso D, Boissière C, Sánchez C, Soler-Illia GJdAA, Míguez H (2008) Sorption properties of mesoporous multilayer thin films. J Phys Chem C 112(9):3157–3163. https://doi.org/10.1021/jp710612y

    Article  CAS  Google Scholar 

  54. Murray C, Flannery C, Streiter I, Schulz SE, Baklanov MR, Mogilnikov KP, Himcinschi C, Friedrich M, Zahn DRT, Gessner T (2002) Comparison of techniques to characterise the density, porosity and elastic modulus of porous low-k SiO2 xerogel films. Microelectronic Eng 60(1–2):133–141. https://doi.org/10.1016/S0167-9317(01)00589-5

    Article  CAS  Google Scholar 

  55. Farnell GW, Adler EL (1972) 2 - Elastic wave propagation in thin layers. In: Warren PM, RNT (eds) Physical acoustics, 9. Academic Press, 35-127. https://doi.org/10.1016/B978-0-12-395670-5.50007-6

  56. Schneider D, Schwarz T, Buchkremer H-P, Stöver D (1993) Non-destructive characterization of plasma-sprayed ZrO2 coatings by ultrasonic surface waves. Thin Solid Films 224(2):177–183. https://doi.org/10.1016/0040-6090(93)90429-S

    Article  Google Scholar 

  57. Glorieux C, Gao W, Kruger SE, Van de Rostyne K, Lauriks W, Thoen J (2000) Surface acoustic wave depth profiling of elastically inhomogeneous materials. J Appl Phys 88(7):4394–4400. https://doi.org/10.1063/1.1290457

    Article  CAS  Google Scholar 

  58. Levy M, Bass, HE, Stern, RR, & Keppens, V (2001) Handbook of elastic properties of solids, liquids, and gases, 1. Academic Press,

  59. Every AG (1995) Phonons in crystal lattices. Encyclopedia Appl Phys 13:439–458

    Google Scholar 

  60. Schneider D, Schwarz T (1997) A photoacoustic method for characterising thin films. Surface Coatings Technol 91(1–2):136–146. https://doi.org/10.1016/S0257-8972(96)03147-7

    Article  CAS  Google Scholar 

  61. Qi H, Xiao X, Kong T (2019) Quantitative simultaneous determination for young’s modulus and adhesion of low-k thin film by non-destructive CZM-SAW technique. J Nondestructive Evaluat 38(2):59. https://doi.org/10.1007/s10921-019-0597-2

    Article  Google Scholar 

  62. Radim Kudělka LV, Tomáštík Jan, Sabina M, Radim Č (2020) Laser-induced surface acoustic waves for thin filmcharacterization. Acta Polytechnica 27:5. https://doi.org/10.14311/APP.2020.27.0057

    Article  Google Scholar 

  63. Qin H, Xiao X, Sui X, Qi H (2019) Influence of residual stress on the determination of Young’s modulus for SiO2 thin film by the surface acoustic waves. Japnese J Appl Phys 58 (SH). https://doi.org/10.7567/1347-4065/ab1a28

  64. Qin H, Xiao X, Qi H, Kikkawa T Influence of roughness on nondestructive characterization of interconnect film mechanical properties by surface acoustic wave. In: 2019 8th International Symposium on Next Generation Electronics (ISNE), 9-10 Oct. 2019 2019. pp 1-3. https://doi.org/10.1109/ISNE.2019.8896648

  65. Schneider D (2018) Laser-induced surface acoustic waves for material testing. In: Ida N, Meyendorf N (eds) Handbook of advanced non-destructive evaluation. Springer International Publishing, Cham, pp 1-63. https://doi.org/10.1007/978-3-319-30050-4_38-1

  66. Takimura T, Hata N, Takada S, Yoshino T (2008) Determination of mechanical properties of porous silica low-k films on Si substrates using orientation dependence of surface acoustic wave. Japanese J Appl Phys 47(7 PART 1):5400–5403. https://doi.org/10.1143/JJAP.47.5400

    Article  CAS  Google Scholar 

  67. Morrone J, Ramallo JI, Lionello DF, Zelcer A, Auguié B, Angelomé PC, Fuertes MC (2021) Incorporation of porous protective layers as a strategy to improve mechanical stability of Tamm plasmon based detectors. Mater Adv. https://doi.org/10.1039/D1MA00079A

  68. Xiao X, Qi H, Sui X, Kikkawa T (2017) Evaluation and criterion determination of the low-k thin film adhesion by the surface acoustic waves with cohesive zone model. Appl Surface Sci 399:599-607. https://doi.org/10.1016/j.apsusc.2016.12.005

  69. Still T (2010) High frequency acoustics in colloid-based meso- and nanostructures by spontaneous brillouin light scattering. Springer Theses. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-13483-8

  70. Bailey S, Mays E, Michalak DJ, Chebiam R, King S, Sooryakumar R (2013) Mechanical properties of high porosity low- k dielectric nano-films determined by Brillouin light scattering. J Phys D: Appl Phys 46(4):045308. https://doi.org/10.1088/0022-3727/46/4/045308

    Article  CAS  Google Scholar 

  71. Sumanya C (2012) Surface brillouin scattering in opaque thin films and bulk materials. University of the Witwatersrand, Johannesburg

  72. Eguiluz AG, Maradudin AA (1983) Frequency shift and attenuation length of a Rayleigh wave due to surface roughness. Phys Rev B 28(2):728–747. https://doi.org/10.1103/PhysRevB.28.728

    Article  Google Scholar 

  73. Bottani CE, Ferrari AC, Li Bassi A, Milani P, Ferretti M, Piseri P (1998) Brillouin scattering of cluster-assembled carbon films. Carbon 36(5-6):535–538. https://doi.org/10.1016/S0008-6223(98)00051-7

    Article  CAS  Google Scholar 

  74. Casari CS, Li Bassi A, Bottani CE, Barborini E, Piseri P, Podestà A, Milani P (2001) Acoustic phonon propagation and elastic properties of cluster-assembled carbon films investigated by Brillouin light scattering. Phys Rev B 64 (8). https://doi.org/10.1103/PhysRevB.64.085417

  75. Casari CS, Li Bassi A, Bottani CE, Barborini E, Podestà A, Piseri P, Milani P (2003) Brillouin light scattering investigation of cluster-assembled carbon films: acoustic phonon propagation and elastic properties. Diamond Relat Mater 12(3-7):856–860. https://doi.org/10.1016/S0925-9635(02)00267-4

    Article  CAS  Google Scholar 

  76. Zizka J, King S, Every A, Sooryakumar R (2018) Acoustic phonons and mechanical properties of ultra-thin porous low-k films: a surface brillouin scattering study. J Electr Mater 47(7):3942–3950. https://doi.org/10.1007/s11664-018-6276-8

    Article  CAS  Google Scholar 

  77. Bhushan B (2017) Depth-sensing nanoindentation measurement techniques and applications. Microsyst Technol 23(5):1595–1649. https://doi.org/10.1007/s00542-017-3372-2

    Article  Google Scholar 

  78. Oliver WC, Pharr GM(2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology J Mater Res 19(01):3–20. https://doi.org/10.1557/jmr.2004.19.1.3 citeulike-article-id:4008910

    Article  CAS  Google Scholar 

  79. Fischer-Cripps AC (2011) Nanoindentation. 3rd Edition edn. Springer

  80. Jauffres D, Yacou C, Verdier M, Dendievel R, Ayral A (2011) Mechanical properties of hierarchical porous silica thin films: experimental characterization by nanoindentation and Finite Element modeling. Microporous Mesoporous Mater 140:120–129. https://doi.org/10.1016/j.micromeso.2010.09.004

    Article  CAS  Google Scholar 

  81. Fischer-Cripps AC (2000) A review of analysis methods for sub-micron indentation testing. Vacuum 58(4):569–585. https://doi.org/10.1016/S0042-207X(00)00377-8

    Article  CAS  Google Scholar 

  82. Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Characterization 48(1):11–36. https://doi.org/10.1016/S1044-5803(02)00192-4

    Article  CAS  Google Scholar 

  83. Hintsala ED, Hangen U, Stauffer DD (2018) High-throughput nanoindentation for statistical and spatial property determination. JOM 70(4):494–503. https://doi.org/10.1007/s11837-018-2752-0

    Article  Google Scholar 

  84. ISO 14577-4:2016. (2016) ISO. https://www.iso.org/standard/61823.html. 2021

  85. Hay J, Crawford B (2011) Measuring substrate-independent modulus of thin films. J Mater Res 26(06):727–738. https://doi.org/10.1557/jmr.2011.8

    Article  CAS  Google Scholar 

  86. Bull SJ (2012) Mechanical response of atomic layer deposition alumina coatings on stiff and compliant substrates. J Vacuum Sci Technol A 30(1):01A160. https://doi.org/10.1116/1.3670401

    Article  CAS  Google Scholar 

  87. Bull SJ (2015) A simple method for the assessment of the contact modulus for coated systems. Philos Mag 95(16-18):1907–1927. https://doi.org/10.1080/14786435.2014.909612

    Article  CAS  Google Scholar 

  88. Mercier D (2013) Behaviour laws of materials used in electrical contacts for « flip chip » technologies. Université de Grenoble.

  89. Mercier D (2015) NIMS: NIMS. https://doi.org/10.5281/zenodo.14610

  90. Chen S, Liu L, Wang T (2005) Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations. Surf Coat Technol 191(1):25–32. https://doi.org/10.1016/j.surfcoat.2004.03.037

    Article  CAS  Google Scholar 

  91. Fu Z (2021) Effect of atomic layer deposited Al2O3 and subsequent annealing on the nanomechanical properties on various substrates. J Mater Sci 56(13):7879–7888. https://doi.org/10.1007/s10853-021-05804-6

    Article  CAS  Google Scholar 

  92. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583

    Article  CAS  Google Scholar 

  93. Bec S, Tonck A, Loubet JL (2006) A simple guide to determine elastic properties of films on substrate from nanoindentation experiments. Philos Mag 86(33-35):5347–5358. https://doi.org/10.1080/14786430600660856

    Article  CAS  Google Scholar 

  94. Puchi-Cabrera ES, Staia MH, Iost A (2015) A description of the composite elastic modulus of multilayer coated systems. Thin Solid Films 583:177–193. https://doi.org/10.1016/j.tsf.2015.02.078

    Article  CAS  Google Scholar 

  95. Ramallo JI, Morrone J, Lionello DF, Angelomé PC, Fuertes MC (2021) Mechanical properties and structural integrity of devices based on sol-gel mesoporous oxides thin films. Submitted

  96. Zhang S (2010) Nanostructured thin films and coatings: mechanical properties. CRC Press

  97. Kessman AJ, Kukureka SN, Cairns DR (2011) Tribology of non-wetting fluorinated mesoporous silica films. Wear 271(9):2144–2149. https://doi.org/10.1016/j.wear.2010.12.066

    Article  CAS  Google Scholar 

  98. Wang X, Xu P, Han R, Ren J, Li L, Han N, Xing F, Zhu J (2019) A review on the mechanical properties for thin film and block structure characterised by using nanoscratch test. Nanotechnol Rev 8(1):628–644. https://doi.org/10.1515/ntrev-2019-0055

    Article  CAS  Google Scholar 

  99. Tomastik J, Ctvrtlik R (2013) Nanoscratch test—A tool for evaluation of cohesive and adhesive properties of thin films and coatings. EPJ Web of Conferences 48:00027

    Article  Google Scholar 

  100. Banerjee DA, Kessman AJ, Cairns DR, Sierros KA (2014) Tribology of silica nanoparticle-reinforced, hydrophobic sol-gel composite coatings. Surf Coat Technol 260:214–219. https://doi.org/10.1016/j.surfcoat.2014.07.091

    Article  CAS  Google Scholar 

  101. Fujiwara H (2007) Introduction to Spectroscopic Ellipsometry. In: Spectroscopic Ellipsometry. John Wiley & Sons, Ltd, pp 1-11. https://doi.org/10.1002/9780470060193.ch1

  102. Löbmann P (2017) Characterization of sol–gel thin films by ellipsometric porosimetry. J Sol-Gel Sci Technol 84(1):2–15. https://doi.org/10.1007/s10971-017-4473-1

    Article  CAS  Google Scholar 

  103. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem Mater 13(10):3169–3183. https://doi.org/10.1021/cm0101069

    Article  CAS  Google Scholar 

  104. Melosh NA, Lipic P, Bates FS, Wudl F, Stucky GD, Fredrickson GH, Chmelka BF (1999) Molecular and mesoscopic structures of transparent block copolymer−silica monoliths. Macromolecules 32(13):4332–4342. https://doi.org/10.1021/ma9817323

    Article  CAS  Google Scholar 

  105. van der Lee A (2000) Grazing incidence specular reflectivity: theory, experiment, and applications. Solid State Sci 2(2):257–278

    Article  Google Scholar 

  106. Prass J, Müter D, Fratzl P, Paris O (2009) Capillarity-driven deformation of ordered nanoporous silica. Appl Phys Lett 95(8):083121. https://doi.org/10.1063/1.3213564

    Article  CAS  Google Scholar 

  107. Song L, Rawolle M, Hohn N, Gutmann JS, Frielinghaus H, Müller-Buschbaum P (2019) In situ monitoring mesoscopic deformation of nanostructured porous titania films caused by water ingression. ACS Appl Mater Interfaces 11(35):32552–32558. https://doi.org/10.1021/acsami.9b10750

    Article  CAS  Google Scholar 

  108. Fan H, Reed S, Baer T, Schunk R, López GP, Brinker CJ (2001) Hierarchically structured functional porous silica and composite produced by evaporation-induced self-assembly. Microporous Mesoporous Mater 44–45(0):625–637. https://doi.org/10.1016/S1387-1811(01)00243-8

    Article  Google Scholar 

  109. Lancelle-Beltran E, Prené P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F, Boissière C, Grosso D, Sanchez C (2006) Nanostructured hybrid solar cells based on self-assembled mesoporous titania thin films. Chem Mater 18(26):6152–6156. https://doi.org/10.1021/cm060925z

    Article  CAS  Google Scholar 

  110. Ovchinnikov IS, Vishnevskiy AS, Seregin DS, Rezvanov AA, Schneider D, Sigov AS, Vorotilov KA, Baklanov MR (2020) Evaluation of mechanical properties of porous OSG films by PFQNM AFM and benchmarking with traditional instrumentation. Langmuir 36(32):9377–9387. https://doi.org/10.1021/acs.langmuir.0c01054

    Article  CAS  Google Scholar 

  111. Rahman T, Liu R, Ortel E, Kraehnert R, Antoniou A (2014) Mechanical behavior of mesoporous titania thin films. Applied Physics Letters 104 (24):-. https://doi.org/10.1063/1.4883260

  112. Ha T-J, Park H-H, Kang ES, Shin S, Cho HH (2010) Variations in mechanical and thermal properties of mesoporous alumina thin films due to porosity and ordered pore structure. J Colloid Interface Sci 345(1):120–124. https://doi.org/10.1016/j.jcis.2010.01.028

    Article  CAS  Google Scholar 

  113. Kessman AJ, DeFusco EE, Hoover AW, Sierros KA, Cairns DR (2012) Structural, mechanical, and tribological properties of fluorinated mesoporous silica films: effect of functional moiety and surfactant template concentrations. Thin Solid Films 520(11):3896–3903. https://doi.org/10.1016/j.tsf.2012.01.020

    Article  CAS  Google Scholar 

  114. Michalak DJ, Blackwell JM, Torres JM, Sengupta A, Kreno LE, Clarke JS, Pantuso D (2015) Porosity scaling strategies for low-k films. J Mater Res 30(22):3363–3385. https://doi.org/10.1557/jmr.2015.313

    Article  CAS  Google Scholar 

  115. Vanstreels K, Wu C, Verdonck P, Baklanov MR (2012) Intrinsic effect of porosity on mechanical and fracture properties of nanoporous ultralow-k dielectrics. Appl Phys Lett 101 (12): https://doi.org/10.1063/1.4753972

  116. Bass JD, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions. Chem Mater 19(17):4349–4356. https://doi.org/10.1021/cm071305g

    Article  CAS  Google Scholar 

  117. Lionello DF (2018) Estudio de las propiedades mecánicas y tribológicas de recubrimientos nanoestructurados. PhD Thesis, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina

    Google Scholar 

  118. Lionello DF, Steinberg PY, Zalduendo MM, Soler-Illia GJAA, Angelomé PC, Fuertes MC (2017) Structural and mechanical evolution of mesoporous films with thermal treatment: the case of Brij 58 templated titania. J Phys Chem C 121(40):22576–22586. https://doi.org/10.1021/acs.jpcc.7b09054

    Article  CAS  Google Scholar 

  119. Yaghoubi H, Taghavinia N, Alamdari EK, Volinsky AA (2010) Nanomechanical properties of TiO2 granular thin films. ACS Appl Mater Interfaces 2(9):2629–2636. https://doi.org/10.1021/am100455q

    Article  CAS  Google Scholar 

  120. Siegel RW (1993) Synthesis and properties of nanophase materials. Mater Sci Eng A 168(2):189–197. https://doi.org/10.1016/0921-5093(93)90726-U

    Article  Google Scholar 

  121. Alberti S, Steinberg PY, Giménez G, Amenitsch H, Ybarra G, Azzaroni O, Angelomé PC, Soler-Illia GJAA (2019) Chemical stability of mesoporous oxide thin film electrodes under electrochemical cycling: from dissolution to stabilization. Langmuir 35(19):6279–6287. https://doi.org/10.1021/acs.langmuir.9b00224

    Article  CAS  Google Scholar 

  122. Steinberg PY, Lionello DF, Medone Acosta DE, Zalduendo MM, Amenitsch H, Granja LP, Marmiroli B, Angelomé PC, Fuertes MC (2021) Structural and mechanical properties of silica mesoporous films synthesized using deep X-rays: implications in the construction of devices. Front Mater 8 (27). https://doi.org/10.3389/fmats.2021.628245

  123. Boudot M, Elettro H, Grosso D (2016) Converting water adsorption and capillary condensation in usable forces with simple porous inorganic thin films. ACS Nano 10(11):10031–10040. https://doi.org/10.1021/acsnano.6b04648

    Article  CAS  Google Scholar 

  124. Gazoni RM, Bellino MG, Cecilia Fuertes M, Giménez G, Soler-Illia GJAA, Ricci MLM (2017) Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement. J Mater Chem C 5(14):3445–3455. https://doi.org/10.1039/c6tc05195b

    Article  CAS  Google Scholar 

  125. Innocenzi P, Malfatti L (2018) Nanoparticles in mesoporous films, a happy marriage for materials science. J Nanoparticle Res 20 (6). https://doi.org/10.1007/s11051-018-4251-1

  126. Innocenzi P, Malfatti L (2019) Mesoporous materials as platforms for surface-enhanced Raman scattering. Trends Analytical Chem 114:233–241. https://doi.org/10.1016/j.trac.2019.02.031

    Article  CAS  Google Scholar 

  127. Etienne-Calas S, Duri A, Etienne P (2004) Fracture study of organic-inorganic coatings using nanoindentation technique. J Non-Crystalline Solids 344(1-2):60–65. https://doi.org/10.1016/j.jnoncrysol.2004.07.029

    Article  CAS  Google Scholar 

  128. Malzbender J, De With G (2002) A model to determine the interfacial fracture toughness for chipped coatings. Surf Coat Technol 154(1):21–26. https://doi.org/10.1016/S0257-8972(01)01708-X

    Article  CAS  Google Scholar 

  129. Den Toonder J, Malzbender J, De With G, Balkenende R (2002) Fracture toughness and adhesion energy of sol-gel coatings on glass. J Mater Res 17(1):224–233. https://doi.org/10.1557/JMR.2002.0032

    Article  Google Scholar 

  130. Malzbender J, De With G (2001) The use of the indentation loading curve to detect fracture of coatings. Surf Coat Technol 137(1):72–76. https://doi.org/10.1016/S0257-8972(00)01091-4

    Article  CAS  Google Scholar 

  131. Vanstreels K, Krishtab M, Garcia Gonzalez L, Armini S (2017) Impact of organic linking and terminal groups on the mechanical properties of self-assembly based low-k dielectrics. Appl Phys Lett 111 (16). https://doi.org/10.1063/1.4993088

  132. Gungor MR, Watkins JJ, Maroudas D (2011) Mechanical properties of ultralow-dielectric-constant mesoporous amorphous silica structures: effects of pore morphology and loading mode. Appl Phys Lett 98(12):121902. https://doi.org/10.1063/1.3567537

    Article  CAS  Google Scholar 

  133. Xu Z, Zhang L, Wang L, Zuo J, Yang M (2019) Computational characterization of the structural and mechanical properties of nanoporous titania. RSC Adv 9(27):15298–15306. https://doi.org/10.1039/C9RA02298H

    Article  CAS  Google Scholar 

  134. Yang K, Yang L, Ai CZ, Wang Z, Lin SW (2019) Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study. Chin Phys B 28 (10). https://doi.org/10.1088/1674-1056/ab3da2

  135. Huygh S, Bogaerts A, Van Duin ACT, Neyts EC (2014) Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide. Comput Mater Sci 95:579-591. https://doi.org/10.1016/j.commatsci.2014.07.056

  136. Jones RE, Rimsza JM, Criscenti LJ (2018) An atomic-scale evaluation of the fracture toughness of silica glass. J Phys: Condensed Matter 30 (24):245901. https://doi.org/10.1088/1361-648x/aac28b

  137. Patil SP, Parale VG, Park HH, Markert B (2019) Molecular dynamics and experimental studies of nanoindentation on nanoporous silica aerogels. Mater Sci Eng A 742:344-352. https://doi.org/10.1016/j.msea.2018.11.019

  138. Stan G, King SW (2020) Atomic force microscopy for nanoscale mechanical property characterization. J Vacuum Sci Technol B: Nanotechnol Microelectr 38 (6). https://doi.org/10.1116/6.0000544

  139. Mercier D, Nicolay A, Boudiba A, Vanden Eynde X, Libralesso L, Daniel A, Olivier M (2020) Mechanical properties and decohesion of sol–gel coatings on metallic and glass substrates. J Sol-Gel Sci Technol 93(2):229–243. https://doi.org/10.1007/s10971-019-05196-9

    Article  CAS  Google Scholar 

  140. Wu C-W, Yamauchi Y, Ohsuna T, Kuroda K (2006) Structural study of highly ordered mesoporous silica thin films and replicated Pt nanowires by high-resolution scanning electron microscopy (HRSEM). J Mater Chem 16(30):3091–3098. https://doi.org/10.1039/B604062D

    Article  CAS  Google Scholar 

  141. Bai M, Fu X, Dorantes D, Jin B, Hu X (2011) Young’s modulus determination of low-k porous films by wide-band DCC/LD LSAW. J Semiconduct 32 (10). https://doi.org/10.1088/1674-4926/32/10/103003

  142. Tetelin A, Blanc L, Tortissier G, Dejous C, Rebière D, Boissière C Guided SH-SAW characterization of elasticity variations of mesoporous TiO2 sensitive films during humidity sorption. In: Proceedings of IEEE Sensors, 2010. pp 2136-2140. https://doi.org/10.1109/ICSENS.2010.5690513

  143. de Theije FK, Balkenende AR, Verheijen MA, Baklanov MR, Mogilnikov KP, Furukawa Y (2003) Structural characterization of mesoporous organosilica films for ultralow-k dielectrics. The Journal of Physical Chemistry B 107(18):4280–4289. https://doi.org/10.1021/jp027701y

    Article  CAS  Google Scholar 

  144. Zizka J, King S, Every AG, Sooryakumar R (2016) Mechanical properties of low- and high- k dielectric thin films: a surface Brillouin light scattering study. J Appl Phys 119 (14). https://doi.org/10.1063/1.4945672

  145. Ha T-J, Park H-H, Jang HW, Yoon S-J, Shin S, Cho HH (2012) Study on the thermal stability of ordered mesoporous SiO2 film for thermal insulating film. Microporous Mesoporous Mater 158:123–128. https://doi.org/10.1016/j.micromeso.2012.03.028

    Article  CAS  Google Scholar 

  146. Redzheb M, Okudur OO, Bernstorff S, Juraic K, Van Der Voort P, Armini S (2018) Tuning the properties of periodic mesoporous organosilica films for low-k application by gemini surfactants. ChemPhysChem 19(18):2295–2298. https://doi.org/10.1002/cphc.201800341

    Article  CAS  Google Scholar 

  147. Carboni D, Pinna A, Amenitsch H, Casula MF, Loche D, Malfatti L, Innocenzi P (2015) Getting order in mesostructured thin films, from pore organization to crystalline walls, the case of 3-glycidoxypropyltrimethoxysilane. Phys Chem Chem Phys 17(16):10679–10686. https://doi.org/10.1039/C5CP00433K

    Article  CAS  Google Scholar 

  148. Vishnevskiy AS, Naumov S, Seregin DS, Wu Y-H, Chuang W-T, Rasadujjaman M, Zhang J, Leu J, Vorotilov KA, Baklanov MR (2020) Effects of methyl terminal and carbon bridging groups ratio on critical properties of porous organosilicate glass films. Materials 13(20):4484

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JIR acknowledges CONICET for a doctoral scholarship. M. C. Marchi (CMA-IFIBA-UBA) is acknowledged for SEM measurements. S. Ziegler and P. Agee (Agilent Technologies) are acknowledged for performing nanoindentation-CSM measurements. We thank P. C. Angelomé for reading this manuscript. MCF and GJAASI are CONICET researchers.

Funding

This work was supported by ANPCyT (PICT 2015-0351, PICT 2017-1133, PICT 2017-4651, PICT 2018-04236).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Galo J. A. A. Soler-Illia or María Cecilia Fuertes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lionello, D.F., Ramallo, J.I., Soler-Illia, G.J.A.A. et al. Mechanical properties of ordered mesoporous oxides thin films. J Sol-Gel Sci Technol 101, 114–139 (2022). https://doi.org/10.1007/s10971-021-05626-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05626-7

Keywords

Navigation