Skip to main content
Log in

Comparison studies of Zn-doped CuO thin films deposited by manual and automated nebulizer-spray pyrolysis systems and their application in heterojunction-diode fabrication

  • Original Paper: Functional coatings, thin films, and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper reports on the development of an automated nebulizer-spray pyrolysis (NSP) system and comparison studies of zinc-doped copper oxide with doping concentrations of 1%, 3%, and 5% deposited by manual and automated nebulizer-spray pyrolysis (NSP) systems for heterojunction-diode applications. The structural, optical, morphological, and electrical properties of the prepared manual and automated CuO:Zn thin films were compared. X-ray diffractometry (XRD) studies revealed that all the manual and automated CuO:Zn thin films have monoclinic structure. The crystallite size of the films has been calculated using Scherrer’s formula. Field-emission scanning electron microscope (FESEM) images revealed spherical-shaped small grains in the automated CuO:Zn thin films, while agglomerated particles are observed in the manual CuO:Zn thin films. The highest optical absorbance and lowest optical band gap values were recorded using UV–Vis spectrophotometry. The optical band gap value increases when the doping with Zn increases beyond 3%. The maximum electrical conductivity of manual and automated CuO:Zn thin films was recorded using an electrometer. Based on the results obtained from these characterization studies, p-type (3% CuO:Zn thin film) and n-type (silicon wafer) samples prepared using the manual and automated NSP systems were used to fabricate Ag/p-CuO:Zn/n-Si heterojunction diodes, which were studied under dark and light conditions. The investigation results reveal that the heterojunction diode fabricated using the automated NSP system has a lower ideality factor and barrier height compared with the heterojunction diode prepared using the manual NSP system.

Highlights

  • Manual and automated CuO:Zn (3%) thin films show good structural, optical, morphological, and electrical properties.

  • Ag/p-CuO:Zn/n-Si heterojunction diode is fabricated using manual and automated nebulizer-spray pyrolysis (NSP) system.

  • Automated Ag/p-CuO:Zn/n-Si heterojunction diode shows the lowest ideality factor (ɳ) and barrier height (ɸb).

  • The investigation results confirm that the automation process significantly modifies thin-film and diode properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Erkan Y, Mustafa S (2020) Functionalized nanomaterials for sample preparation methods Handbook of nanomaterials in analytical chemistry. Elsevier. https://doi.org/10.1016/B978-0-12-816699-4.00015-3

  2. Jacob A, Andrade-Arvizu MC-P, Osvaldo V-G (2015) SnS-based thin film solar cells: perspectives over the last 25 years. J Mater Sci Mater Electron 26:4541–4556. https://doi.org/10.1007/s10854-015-3050-z

    Article  CAS  Google Scholar 

  3. Perednis D, Gauckler LJ (2004) Thin film deposition using spray pyrolysis. J Electroceram 14:103–111. https://doi.org/10.1007/s10832-005-0870-x

    Article  CAS  Google Scholar 

  4. Elfakir A, Tlemçani TS, Benamar EB et al. (2015) Structural, electrical and optical properties of sprayed Nd–F codoped ZnO thin films. J Sol-Gel Sci Technol 73:557–562. https://doi.org/10.1007/s10971-014-3518-y

    Article  CAS  Google Scholar 

  5. Shashidhar R, Choudhary N (2020) Cost-effective SnS heterojunction solar cells synthesized by spray pyrolysis. J Sol-Gel Sci Technol 96:188–196. https://doi.org/10.1007/s10971-020-05397-7

    Article  CAS  Google Scholar 

  6. Kathalingam A, Kesavan K, Mary Pradeepa V et al. (2020) Fabrication and characterization of CuO/CdS heterostructure for optoelectronic applications. J Sol-Gel Sci Technol 96:178–187. https://doi.org/10.1007/s10971-020-05391-z

    Article  CAS  Google Scholar 

  7. Kumar A, Prajapati CS, Sahay PP (2019) Modification in the microstructural and electrochromic properties of spray-pyrolysed WO3 thin films upon Mo doping. J Sol-Gel Sci Technol 90:281–295. https://doi.org/10.1007/s10971-019-04960-1

    Article  CAS  Google Scholar 

  8. Mageshwari K, Sathyamoorthy R (2013) Organic free synthesis of flower-like hierarchical CuO microspheres by reflux condensation approach. Appl Nanosci 3:161–166. https://doi.org/10.1007/s13204-012-0116-6

    Article  CAS  Google Scholar 

  9. Shunmugam M, Gurusamy H, Devarajan PA (2017) Investigations on the structural, electrical properties and conduction mechanism of CuO nano flakes. Int J Nano Dimens 8:216–223

    CAS  Google Scholar 

  10. Wang C, Zeng W, Zhang H et al. (2014) Synthesis and growth mechanism of CuO nanostructures and their gas sensing properties. J Mater Sci: Mater Electron 25:2041–2046. https://doi.org/10.1007/s10854-014-1837-y

    Article  CAS  Google Scholar 

  11. Xiaodi LIU, Guangyin LIU, Lijuan WANG, Yinping LI, Yupei MA, Jianmin MA (2016) Morphology- and facet-controlled synthesis of CuO micro/nanomaterials and analysis of their lithium ion storage properties. J Power Sources 312:199–206. https://doi.org/10.1016/j.jpowsour.2016.02.048

    Article  CAS  Google Scholar 

  12. Khojier K, Savaloni H, Sadeghi Z (2014) A comparative investigation on growth, nanostructure and electrical properties of copper oxide thin films as a function of annealing conditions. J Theor Appl Phys 8:116. https://doi.org/10.1007/s40094-014-0116-x

    Article  Google Scholar 

  13. K.G. D, Jampana N (2016) Development of an automated ultrasonic spray pyrolysis system and the growth of Cu2ZnSnS4 thin films. J Anal Appl Pyrol 117:141–146. https://doi.org/10.1016/j.jaap.2015.12.004

    Article  CAS  Google Scholar 

  14. Ravichandran K, Manivasha A, Subha K, C handrabose A, Mariappan R (2016) Cost-effective nebulizer sprayed ZnO thin films for enhanced ammonia gas sensing – Effect of deposition temperature. Surf Interfaces 1-3:13–20. https://doi.org/10.1016/j.surfin.2016.06.004

    Article  CAS  Google Scholar 

  15. Munjer MA, Hossain MdFaruk, Rahman DrMdHafizur, Mahmud MZ (2012) Fabrication of a cost effective automatic controller for spray-pyrolysis technique to deposit thin films. 7th International Conference on Electrical and Computer Engineering, ICECE 2012. 2012:78–81. https://doi.org/10.1109/ICECE.2012.6471489.

    Article  Google Scholar 

  16. Sangle NS, Dhatrak SE, Wagh VG (2015) Microcontroller based solution delivery pump for spray pyrolysis international journal of emerging technology and advanced engineering, Volume 5, Issue 1, 319–322.

  17. Marabelli F, Parravicini GB, Salghetti-Drioli F (1995) Optical band gap of CuO. Phys Rev B 52(3):1433–1436. https://doi.org/10.1103/PhysRevB.52.1433

    Article  CAS  Google Scholar 

  18. Ghosh S, Avasthi DK, Shah P, Ganesan V, Gupta A, Sarangi D, Bhattacharya R, Assmann W (2000) Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization. Vacuum 57:377–385. https://doi.org/10.1016/S0042-207X(00)00151-2

    Article  CAS  Google Scholar 

  19. Faiz H, Siraj K, Rafique MS, Naseem S, Anwar AW (2015) Effect of zinc induced compressive stresses on different properties of copper oxide thin films. Indian J Phys 89:353–360. https://doi.org/10.1007/s12648-014-0597-0

    Article  CAS  Google Scholar 

  20. Baturay S, Tombak A, Kaya D, Ocak YS, Tokus M, Aydemir M, Kilicoglu T(2016) Modification of electrical and optical properties of CuO thin films by Ni doping. J Sol-Gel Sci Technol 78:422–429. https://doi.org/10.1007/s10971-015-3953-4

    Article  CAS  Google Scholar 

  21. Bayansal F, Taşköprü T, Şahin B, Cetinkara H (2014) Effect of cobalt doping on nanostructured CuO thin films. Met Mat Trans A 45:3670–3674. https://doi.org/10.1007/s11661-014-2306-1

    Article  CAS  Google Scholar 

  22. Gulen Y, Bayansal F, Sahin B, Cetinkara HA, Guder HS (2013) Fabrication and characterization of Mn-doped CuO thin films by the SILAR method. Ceram Int 39:6475–6480. https://doi.org/10.1016/j.ceramint.2013.01.077

    Article  CAS  Google Scholar 

  23. Sonia S, Annsi IJ, Kumar PS, Mangalaraj D, Viswanathan C, Ponpandian N (2014) Hydrothermal synthesis of novel Zn doped CuO nanoflowers as an efficient photodegradation material for textile dyes. Mater Lett 144:127–130. https://doi.org/10.1016/j.matlet.2015.01.026

    Article  CAS  Google Scholar 

  24. Jayaprakash J, Srinivasan N, Chandrasekaran P, Girija EK (2015) Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol–gel method. Spectrochim Acta Part A 136(C):1803–1806. https://doi.org/10.1016/j.saa.2014.10.087

    Article  CAS  Google Scholar 

  25. Eshed Michal, Lellouche Jonathan, Gedanken Aharon, Banin Ehud (2014) A Zn-Doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against streptococcus mutans compared to nanosized CuO. Adv Funct Mater 24(10):1382–1390. https://doi.org/10.1002/adfm.201302425

    Article  CAS  Google Scholar 

  26. Yang SG, Li T, Gu BX, Du YW, Sung HY, Hung S T ST, Wong CY, Pakhomov AB (2003) Ferromagnetism in Mn-doped CuO. Appl Phys Lett 83:3746. https://doi.org/10.1063/1.1623944

    Article  CAS  Google Scholar 

  27. Morales Julian, Sánchez Luis, Martín Francisco, Barrado Jose, Sánchez Miguel (2004) Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochim Acta 49:4589–4597. https://doi.org/10.1016/j.electacta.2004.05.012

    Article  CAS  Google Scholar 

  28. Thangaraju D, Marnadu R, Vedi S, Durairajan A, Ponnusamy K, Chandrasekaran J, Jayakumar S, Valente MA, Greenidge D (2020) Solvent influenced synthesis of single-phase SnS2 nanosheets for solution-processed photodiode fabrication. Cryst Eng Comm 22:525–533. https://doi.org/10.1039/C9CE01417A

    Article  CAS  Google Scholar 

  29. Jagadeesan V, Subramaniam V (2019) Impact of molarity on structural, optical, morphological and electrical properties of copper oxide thin films prepared by cost effective jet nebulizer spray pyrolysis technique. J Mater Sci: Mater Electron 30:1571–1578. https://doi.org/10.1007/s10854-018-0428-8

    Article  CAS  Google Scholar 

  30. Sonia S, Annsi I, Kumar J, Mangalaraj DPS, Viswanathan C (2015) Hydrothermal synthesis of novel Zn doped CuO nanoflowers as an efficient photodegradation material for textile dyes Mater Lett 144:127–130. https://doi.org/10.1016/j.matlet.2015.01.026

    Article  CAS  Google Scholar 

  31. Cullity BD:Elements of X-rays, 2nd ed. Addison Wesley, London (1978)

  32. Fan H, Yang L, Hua W, Wu X, Wu Z, Xie S, Zou B (2004) Controlled synthesis of monodispersed CuO nanocrystals. Nanotechnology 15:37–42. https://doi.org/10.1088/0957-4484/15/1/007

    Article  CAS  Google Scholar 

  33. Rafea MA, Roushdy N (2009) Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J Phys D 42:015413–015418. https://doi.org/10.1088/0022-3727/42/1/015413

    Article  CAS  Google Scholar 

  34. Baturay S, Tombak A, Kaya D et al. (2016) Modification of electrical and optical properties of CuO thin films by Ni doping. J Sol-Gel Sci Technol 78:422–429. https://doi.org/10.1007/s10971-015-3953-4

    Article  CAS  Google Scholar 

  35. Nesa M, Sharmin M, Hossain KS et al. (2017) Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. J Mater Sci: Mater Electron 28:12523–12534. https://doi.org/10.1007/s10854-017-7075-3

    Article  CAS  Google Scholar 

  36. Rejith S, Krishnan C (2013) Optical, thermal and magnetic studies on zinc-doped copper oxide nanoparticles. Mater Lett 106:87–89. https://doi.org/10.1016/j.matlet.2013.04.108

    Article  CAS  Google Scholar 

  37. Siraj K, Faiz H, Rafique, S. MS (2015) Naseem microstructural and optical properties of zinc doped copper oxide thin films. Mater Today: Proc 2:5426–5429. https://doi.org/10.1016/j.matpr.2015.11.063

    Article  Google Scholar 

  38. Yathisha RO, Arthoba Nayaka Y (2018) Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn. J Mater Sci 53:678–691. https://doi.org/10.1007/s10853-017-1496-5

    Article  CAS  Google Scholar 

  39. Elangovan E, Ramamurthi K (2005) Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor. Thin Solid Films 476:231–236. https://doi.org/10.1016/j.tsf.2004.09.022

    Article  CAS  Google Scholar 

  40. Chand P, Gaur A, Kumar A, Gaur UK (2015) Effect of NaOH molar concentration on morphology, optical and ferroelectric properties of hydrothermally grown CuO nanoplates. Mater Sci Semicond Process 38:72–80. https://doi.org/10.1016/j.mssp.2015.04.006

    Article  CAS  Google Scholar 

  41. Anu Prathap MU, Kaur B, Srivastava R (2012) Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J Colloid Interface Sci 370:144–154. https://doi.org/10.1016/j.jcis.2011.12.074

    Article  CAS  Google Scholar 

  42. Jana S, Das S, Das NS, Chattopadhyay KK (2010) CuO nanostructures on copper foil by a simple wet chemical route at room temperature. Mater Res Bull 45:693–698. https://doi.org/10.1016/j.materresbull.2010.02.014

    Article  CAS  Google Scholar 

  43. Borgohain K, Mahamuni S (2002) Formation of Single-phase CuO Quantum Particles. J Mater Res 17:1220–1223. https://doi.org/10.1557/JMR.2002.0180

    Article  CAS  Google Scholar 

  44. Raja Muthusamy, Chandrasekaran J, Murugan Balaji, Balasundaram Janarthanan (2016) Impact of annealing treatment on structural and dc electrical properties of spin coated tungsten trioxide thin films for Si/WO3/Ag junction diode. Mater Sci Semicond Process 56:145–154. https://doi.org/10.1016/j.mssp.2016.08.007

    Article  CAS  Google Scholar 

  45. Hong Kihyon, Kim Kisoo, Kim Sungjun, Lee Illhwan, Cho Hyunsu, Yoo Seunghyup, Choi HoWon, Lee Nam-Yang, Tak Yoon-Heung, Lee Jong-Lam(2011) Optical properties of WO3/Ag/WO3 multilayer as transparent cathode in top-emitting organic light emitting diodes. J. Phys. Chem. C 115(8):3453–3459. https://doi.org/10.1021/jp109943b

    Article  CAS  Google Scholar 

  46. Katase T, Onozato T, Hirono M et al. (2016) A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry. Sci Rep. 6:25819. https://doi.org/10.1038/srep25819

    Article  CAS  Google Scholar 

  47. Tataroglu A, Altindal S (2006) Characterization of current–voltage (I–V) and capacitance–voltage–frequency (C–V–f) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectr Eng 83(3):582–588

    Article  CAS  Google Scholar 

  48. Card HC, Rhoderick EH (1971) Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D: Appl Phys 4:1589. https://doi.org/10.1088/0022-3727/4/10/319

    Article  CAS  Google Scholar 

  49. Wang CX, Yang GW, Liu HW, Han YH, Luo JF, Gao CX, Zou GT (2004) Experimental analysis and theoretical model for anomalously high ideality factors in ZnO/diamond p-n junction diode. Appl Phys Lett 84:2427. https://doi.org/10.1063/1.1689397

    Article  CAS  Google Scholar 

  50. Tombak A, Benhaliliba M, Ocak Y, & Kılıçoğlu T (2016) The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results in Physics. 5. https://doi.org/10.1016/j.rinp.2015.11.001.

  51. Venkateswari, P, Thirunavukkarasu P, Ramamurthy M, Murugan B, Chandrasekaran J (2017) Optimization and characterization of CuO thin films for P-N junction diode application by JNSP technique. Optik-International Journal for Light and Electron Optics. 140. https://doi.org/10.1016/j.ijleo.2017.04.039.

  52. Marnadu R, Chandrasekaran J, Maruthamuthu S, Balasubramani V, Vivek P (2019) Ultra-high photoresponse with superiorly sensitive metal-insulator-semiconductor (MIS) structured diodes for UV photodetector application. Appl Surf Sci 480:308–322. https://doi.org/10.1016/j.apsusc.2019.02.214

    Article  CAS  Google Scholar 

  53. Kalidass S, Thirunavukkarasu P, Balaji M, Chandrasekaran J (2018) Investigation on Al doped Zno thin films and its N-Alzno/P-Si junction diodes via dip coating and JNSP techniques. Orient J Chem 34.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jagadeesan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesan, V., Subramaniam, V. Comparison studies of Zn-doped CuO thin films deposited by manual and automated nebulizer-spray pyrolysis systems and their application in heterojunction-diode fabrication. J Sol-Gel Sci Technol 102, 614–627 (2022). https://doi.org/10.1007/s10971-021-05624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05624-9

Keywords

Navigation