Skip to main content
Log in

Following thermal evolution of mesoporous TiO2: from the sol to the oxide

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous TiO2 thin films have been extensively studied and applied in the construction of a wide variety of devices. To this end, it is critical to obtain detailed structural information regarding film formation and processing. However, there is still a lack of information about their chemical identity during thermal treatment, in which a transition from a hybrid mesostructure to a mesoporous matrix occurs. In this work, we present the FTIR characterization of three different mesoporous TiO2 films, templated with Brij 58, Pluronic F127 and Pluronic P123. The FTIR spectra were followed in situ from the sol deposition, through the thermal treatments until reaching 400 °C, using a high temperature cell. A detailed analysis taking into account all of the sol’s components and all the spectral regions in the range 3600–650 cm−1 was performed. The results obtained were compared with thermal analysis, coupled with mass spectrometry analysis of the released species. By this means, all the stages of the processing (solvent evaporation, template elimination and precursors condensation) were identified, and we were able to determine which chemical species are present at every treatment step. The results presented here can be useful when choosing processing conditions adapted for the final application of the TiO2 films.

Pictorial view of the process studied in our work: formation of mesoporous TiO2, followed from room temperature until 400 °C. The image shows the formation and consolidation of the oxide, the appearance of template micelles and their elimination, accompanied by the chemical species released at each step.

Highlights

  • Thermal evolution of mesoporous TiO2 with three different templates was assessed by FTIR analysis.

  • Temperatures at which each processing stage occurs were determined.

  • The three templated systems studied present equivalent behavior.

  • Thermal analysis and mass spectrometry confirm and complement the FTIR results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from the authors.

References

  1. Soler-Illia GJAA, Angelomé PC, Fuertes MC, Grosso D, Boissière C (2012) Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 4(8):2549–2566. https://doi.org/10.1039/c2nr11817c

    Article  CAS  Google Scholar 

  2. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev114(19):9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  3. Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D (2012) Mesoporous titania: from synthesis to application. Nano Today 7(4):344–366. https://doi.org/10.1016/j.nantod.2012.06.012

    Article  CAS  Google Scholar 

  4. Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42(9):4198–4216. https://doi.org/10.1039/c3cs35377j

    Article  CAS  Google Scholar 

  5. Steinberg PY, Zalduendo MM, Giménez G, Soler-Illia GJAA, Angelomé PC (2019) TiO2 mesoporous thin films architecture as a tool to control Au nanoparticles growth and sensing capabilities. Phys Chem Chem Phys 21:10347–10356. https://doi.org/10.1039/C9CP01896D

    Article  CAS  Google Scholar 

  6. Zalduendo MM, Steinberg PY, Prudente T, Di Liscia EJ, Morrone J, Angelomé PC, Huck-Iriart C (2020) Gold semicontinuous thin-film-coated mesoporous TiO2 for SERS substrates. SN Appl Sci 2(11):1809. https://doi.org/10.1007/s42452-020-03635-9

    Article  CAS  Google Scholar 

  7. López-Puente V, Abalde-Cela S, Angelomé PC, Alvarez-Puebla RA, Liz-Marzán LM (2013) Plasmonic mesoporous composites as molecular sieves for SERS detection. J Phys Chem Lett 4(16):2715–2720. https://doi.org/10.1021/jz4014085

    Article  CAS  Google Scholar 

  8. Rassu P, Malfatti L, Carboni D, Casula MF, Garroni S, Zampetti E, Macagnano A, Bearzotti A, Innocenzi P (2017) Mesoscale organization of titania thin films enables oxygen sensing at room temperature. J Mater Chem C 5(45):11815–11823. https://doi.org/10.1039/C7TC03397D

    Article  CAS  Google Scholar 

  9. Auguié B, Fuertes MC, Angelomé PC, López Abdala N, Soler Illia GJAA, Fainstein A (2014) Tamm plasmon resonance in mesoporous multilayers: toward a sensing application. ACS Photonics 1(9):775–780. https://doi.org/10.1021/ph5001549

    Article  CAS  Google Scholar 

  10. Sansierra MC, Morrone J, Cornacchiulo F, Fuertes MC, Angelomé PC (2019) Detection of organic vapors using tamm mode based devices built from mesoporous oxide thin films. ChemNanoMat 5(10):1289–1295. https://doi.org/10.1002/cnma.201900388

    Article  CAS  Google Scholar 

  11. Fuertes MC, López-Alcaraz FJ, Marchi MC, Troiani HE, Luca V, Míguez H, Soler-Illia GJAA (2007) Photonic crystals from ordered mesoporous thin-film functional building blocks. Adv Funct Mater 17(8):1247–1254. https://doi.org/10.1002/adfm.200601190

    Article  CAS  Google Scholar 

  12. Malfatti L, Falcaro P, Amenitsch H, Caramori S, Argazzi R, Bignozzi CA, Enzo S, Maggini M, Innocenzi P (2006) Mesostructured self-assembled titania films for photovoltaic applications. Microporous Mesoporous Mater 88(1):304–311. https://doi.org/10.1016/j.micromeso.2005.09.027

    Article  CAS  Google Scholar 

  13. Lancelle-Beltran E, Prené P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F, Boissière C, Grosso D, Sanchez C (2006) Nanostructured hybrid solar cells based on self-assembled mesoporous titania thin films. Chem Mater 18(26):6152–6156. https://doi.org/10.1021/cm060925z

    Article  CAS  Google Scholar 

  14. Nagpure S, Browning JF, Rankin SE (2017) Incorporating poly(3-hexyl thiophene) into orthogonally aligned cylindrical nanopores of titania for optoelectronics. Microporous Mesoporous Mater 240:65–72. https://doi.org/10.1016/j.micromeso.2016.10.050

    Article  CAS  Google Scholar 

  15. Nagpure S, Zhang Q, Khan MA, Islam SZ, Xu J, Strzalka J, Cheng Y-T, Knutson BL, Rankin SE (2018) Layer-by-layer synthesis of thick mesoporous TiO2 films with vertically oriented accessible nanopores and their application for lithium-ion battery negative electrodes. Adv Funct Mater 28(37):1801849. https://doi.org/10.1002/adfm.201801849

    Article  CAS  Google Scholar 

  16. Faustini M, Nicole L, Boissière C, Innocenzi P, Sanchez C, Grosso D (2010) Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chem Mate 22(15):4406–4413. https://doi.org/10.1021/cm100937e

    Article  CAS  Google Scholar 

  17. Escobar A, Muzzio N, Coy E, Liu H, Bindini E, Andreozzi P, Wang G, Angelomé P, Delcea M, Grzelczak M, Moya SE (2019) Antibacterial mesoporous titania films with embedded gentamicin and surface modified with bone morphogenetic protein 2 to promote osseointegration in bone implants. Adv Mater Interf 6(9):1801648. https://doi.org/10.1002/admi.201801648

    Article  CAS  Google Scholar 

  18. López-Álvarez M, López-Puente V, Rodríguez-Valencia C, Angelomé PC, Liz-Marzán LM, Serra J, Pastoriza-Santos I, González P (2018) Osteogenic effects of simvastatin-loaded mesoporous titania thin films. Biomed Mater 13(2):025017. https://doi.org/10.1088/1748-605x/aa95f1

    Article  CAS  Google Scholar 

  19. Zhao J, Sallard S, Smarsly BM, Gross S, Bertino M, Boissiere C, Chen H, Shi J (2010) Photocatalytic performances of mesoporous TiO2 films doped with gold clusters. J Mater Chem 20(14):2831–2839. https://doi.org/10.1039/b919536j

    Article  CAS  Google Scholar 

  20. Violi IL, Perez MD, Fuertes MC, Soler-Illia GJAA (2012) Highly ordered, accessible and nanocrystalline mesoporous TiO2 thin films on transparent conductive substrates. ACS Appl Mate Interf 4(8):4320–4330. https://doi.org/10.1021/am300990p

    Article  CAS  Google Scholar 

  21. Sakatani Y, Grosso D, Nicole L, Boissière C, Soler-Illia GJdAA, Sanchez C (2006) Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility. J Mater Chem 16(1):77–82. https://doi.org/10.1039/b512824m

    Article  CAS  Google Scholar 

  22. Bérubé F, Kaliaguine S (2008) Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous Mesoporous Mater115(3):469–479. https://doi.org/10.1016/j.micromeso.2008.02.028

    Article  CAS  Google Scholar 

  23. Innocenzi P, Kidchob T, Malfatti L, Costacurta S, Takahashi M, Piccinini M, Marcelli A (2008) In-situ study of sol–gel processing by time-resolved infrared spectroscopy. J Sol-Gel Sci Technol 48(1–2):253–259. https://doi.org/10.1007/s10971-008-1716-1

    Article  CAS  Google Scholar 

  24. Innocenzi P, Malfatti L, Piccinini M, Marcelli A (2010) Evaporation-induced crystallization of pluronic F127 studied in situ by time-resolved infrared spectroscopy. J Phys Chem A 114(1):304–308. https://doi.org/10.1021/jp908162z

    Article  CAS  Google Scholar 

  25. Kleitz F, Schmidt W, Schüth F (2003) Calcination behavior of different surfactant-templated mesostructured silica materials. Microporous Mesoporous Mater 65(1):1–29. https://doi.org/10.1016/s1387-1811(03)00506-7

    Article  CAS  Google Scholar 

  26. Koganti VR, Das S, Rankin SE (2014) In situ FTIR investigation of the kinetics of silica polycondensation in surfactant templated, mesostructured thin films. J Phys Chem C 118(33):19450–19461. https://doi.org/10.1021/jp505651j

    Article  CAS  Google Scholar 

  27. Pan D, Zhao L, Qian K, Tan L, Zhou L, Zhang J, Huang X, Fan Y, Liu H, Yu C, Bao X (2011) A silanol protection mechanism: understanding the decomposition behavior of surfactants in mesostructured solids. J Mater Res 26(06):804–814. https://doi.org/10.1557/jmr.2010.98

    Article  CAS  Google Scholar 

  28. Innocenzi P, Malfatti L, Kidchob T, Costacurta S, Falcaro P, Piccinini M, Marcelli A, Morini P, Sali D, Amenitsch H (2007) Time-resolved simultaneous detection of structural and chemical changes during self-assembly of mesostructured films. J Phys Chem C 111(14):5345–5350. https://doi.org/10.1021/jp066566c

    Article  CAS  Google Scholar 

  29. Innocenzi P, Malfatti L, Kidchob T, Grosso D (2010) Controlling the processing of mesoporous titania films by in situ FTIR spectroscopy: getting crystalline micelles into the mesopores. J Phys Chem C 114(24):10806–10811. https://doi.org/10.1021/jp9099732

    Article  CAS  Google Scholar 

  30. Almeida RM, Marques AC (2018) Characterization of Sol-Gel Materials by Infrared Spectroscopy. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. Springer International Publishing, Cham, pp 1121–1151. https://doi.org/10.1007/978-3-319-32101-1_33

  31. Carboni D, Marongiu D, Rassu P, Pinna A, Amenitsch H, Casula M, Marcelli A, Cibin G, Falcaro P, Malfatti L, Innocenzi P (2014) Enhanced photocatalytic activity in low-temperature processed titania mesoporous films. J Phys Chem C 118(22):12000–12009. https://doi.org/10.1021/jp501653x

    Article  CAS  Google Scholar 

  32. Malfatti L, Marcelli A, Innocenzi P (2011) Time-resolved techniques for infrared and terahertz characterization with synchrotron radiation of evaporating systems. Rendiconti Lincei 22(1):81–91. https://doi.org/10.1007/s12210-011-0140-6

    Article  Google Scholar 

  33. Innocenzi P, Kidchob T, Bertolo JM, Piccinini M, Guidi MC, Marcelli C (2006) Time-resolved infrared spectroscopy as an in situ tool to study the kinetics during self-assembly of mesostructured films. J Phys Chem B 110(22):10837–10841. https://doi.org/10.1021/jp060097x

    Article  CAS  Google Scholar 

  34. Burgos M, Langlet M (1999) The sol-gel transformation of TIPT coatings: a FTIR study. Thin Solid Films 349(1–2):19–23. https://doi.org/10.1016/S0040-6090(99)00139-X

    Article  CAS  Google Scholar 

  35. Innocenzi P, Malfatti L, Kidchob T, Enzo S, Ventura GD, Schade U, Marcelli A (2010) Correlative analysis of the crystallization of sol−gel dense and mesoporous anatase titania films. J Phys Chem C 114(51):22385–22391. https://doi.org/10.1021/jp1042766

    Article  CAS  Google Scholar 

  36. Crepaldi EL, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J Am Chem Soc 125(32):9770–9786. https://doi.org/10.1021/ja030070g

    Article  CAS  Google Scholar 

  37. Koganti VR, Dunphy D, Gowrishankar V, McGehee MD, Li X, Wang J, Rankin SE (2006) Generalized coating route to silica and titania films with orthogonally tilted cylindrical nanopore arrays. Nano Lett 6(11):2567–2570. https://doi.org/10.1021/nl061992v

    Article  CAS  Google Scholar 

  38. Angelomé PC, Andrini L, Calvo ME, Requejo FG, Bilmes SA, Soler-Illia GJAA (2007) Mesoporous anatase TiO2 films: use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior. J Phys Chem C 111(29):10886–10893. https://doi.org/10.1021/jp069020z

    Article  CAS  Google Scholar 

  39. Gao W, Zhang Q, Liu P, Zhang S, Zhang J, Chen L (2014) Trail of pore shape and temperature-sensitivity of poly(N-isopropylacrylamide) hydrogels before and after removing Brij-58 template and pore formation mechanism. RSC Adv 4(65):34460. https://doi.org/10.1039/c4ra05780e

    Article  CAS  Google Scholar 

  40. Pidol L, Grosso D, Soler-Illia GJAA, Crepaldi EL, Sanchez C, Albouy PA, Amenitsch H, Euzen P (2002) Hexagonally organised mesoporous aluminium–oxo–hydroxide thin films prepared by the template approach. In situ study of the structural formation. J Mater Chem 12(3):557–564. https://doi.org/10.1039/b109192c

    Article  CAS  Google Scholar 

  41. Soler-Illia GJAA, Scolan E, Louis A, Albouy PA, Sanchez C (2001) Design of meso-structured titanium oxo based hybrid organic–inorganic networks. New J Chem 25:156.

    Article  CAS  Google Scholar 

  42. Majid A, Bibi M (2017) First principles study of vibrational dynamics of ceria-titania hybrid clusters. J Nanopart Res 19(4):122. https://doi.org/10.1007/s11051-017-3823-9

    Article  CAS  Google Scholar 

  43. Soler-Illia GJAA, Louis A, Sanchez C (2002) Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly. Chem Mater14(2):750–759. https://doi.org/10.1021/cm011217a

    Article  CAS  Google Scholar 

  44. Soler-Illia GJAA, Sanchez C (2000) Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic–inorganic composites. J Chem 24:493–499

    CAS  Google Scholar 

  45. Yun HS, Miyazawa K, Zhou HS, Honma I, Kuwabara M (2001) Synthesis of mesoporous thin TiO2 films with hexagonal pore structures using triblock copolymer templates. Adv Mater 13(18):1377–1380. doi:10.1002/1521-4095(200109)13:18<1377::AID-ADMA1377>3.0.CO;2-T

    Article  CAS  Google Scholar 

  46. Alberius PCA, Frindell KL, Hayward RC, Kramer EJ, Stucky GD, Chmelka BF (2002) General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem Mater 14(8):3284–3294. https://doi.org/10.1021/cm011209u

    Article  CAS  Google Scholar 

  47. Choi SY, Mamak M, Coombs N, Chopra N, Ozin GA (2004) Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: bulk and crack-free thin film morphologies. Adv Funct Mater 14(4):335–344. https://doi.org/10.1002/adfm.200305039

    Article  CAS  Google Scholar 

  48. Keene TJM, Gougeon DMR, Denoyel R, Harris KR, Rouquerol J, Llewellyn LP (1999) Calcination of the MCM-41 mesophase: mechanism of surfactant thermal degradation and evolution of the porosity. J Mater Chem 9(11):2843–2849. https://doi.org/10.1039/A904937A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PYS and PFB thank CONICET for their doctoral fellowship. The encouragement given by Dr. Sebastián Alberti is gratefully acknowledged.

Funding

This work was supported by ANPCyT (PICT 2012-0111, 2015-0351, 2017-4651 and 2018-04236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula C. Angelomé.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberg, P.Y., Borovik, P.F., Soler Illia, G.J.A.A. et al. Following thermal evolution of mesoporous TiO2: from the sol to the oxide. J Sol-Gel Sci Technol 102, 151–159 (2022). https://doi.org/10.1007/s10971-021-05617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05617-8

Keywords

Navigation