Skip to main content

Advertisement

Log in

Novel sol–gel derived PLA-siloxane-PEO nanocomposite with enhanced thermal properties and hydrolytic stability

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work presents the synthesis, structural investigation, and some properties of a new PLA-Siloxane-PEO hybrid featuring covalent bonds between polymers and siloxane nodes. The synthesis simultaneously connecting PLA and PEO chains directly to the inorganic phase is first achieved through the use of sol–gel process. The structural features, thermal properties and chemical stability of this biocompatible system have been studied by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, 29Si Nuclear Magnetic Resonance (NMR), scanning electron microscopy (MEV), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). SEM and SAXS measurements showed that the siloxane nodes act as crosslinks between the polymer chains promoting high miscibility between PLA and PEO. FTIR, Raman XRD, DSC, and TGA showed that the presence of the siloxane nodes diminishes the crystallinity of both polymers and increases their thermal resistance. In addition to the absence of brittleness due to the low crystalline character of PLA, this new material exhibits a fantastic resistance to PLA degradation in aqueous medium, attributed both to the presence of the siloxane particles acting as a barrier towards water diffusion and to the hydrophilic PEO segments which may attract water molecules, preventing PLA hydrolysis. All of these characteristics offer an amazing perspective for the use of this hybrid material in biological, medical, and pharmaceutical applications.

Structural model of the new PLA-Siloxane-PEO composite in which PEO chains, PLA chains, and siloxane particles are interpenetrated at nanoscopic scale. Such structure induces simultaneously high thermal stability, high resistance to degradation, and absence of brittleness.

Highlights

  • Siloxane nodes bonded to polymer chains promotes PLA–PEO miscibility.

  • Presence of siloxane nodes promote PLA–PEO miscibility enhances PLA thermal stability and inhibits PLA crystallization and degradation.

  • Low PLA crystallinity induces absence of brittleness.

  • Presence of siloxane nodes and PEO inhibits PLA degradation.

  • Biocompatible material exhibiting high chemical stability in aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated during the study are available from the corresponding author by request.

References

  1. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  2. Ramot Y, Haim-Zada M, Domb AJ, Nyska A (2016) Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 107:153–162. https://doi.org/10.1016/j.addr.2016.03.012

    Article  CAS  Google Scholar 

  3. Allo BA, Costa DO, Dixon SJ, Mequanint K, Rizkalla AS (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3:432–463. https://doi.org/10.3390/jfb3020432

    Article  CAS  Google Scholar 

  4. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers—polylactide: a critique. Eur Polym J 43:4053–4074. https://doi.org/10.1016/j.eurpolymj.2007.06.045

    Article  CAS  Google Scholar 

  5. Cohn D, Hotovely-Salomon A (2005) Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties. Polymer 46:2068–2075. https://doi.org/10.1016/j.polymer.2005.01.012

    Article  CAS  Google Scholar 

  6. Gupta S, Tyagi R, Parmar VS, Sharma SK, Haag R (2012) Polyether based amphiphiles for delivery of active components. Polymer 53:3053–3078. https://doi.org/10.1016/j.polymer.2012.04.047

    Article  CAS  Google Scholar 

  7. Kyeremateng SO, Busse K, Kohlbrecher J, Kressler J (2011) Synthesis and self-organization of poly(propylene oxide)-based amphiphilic and triphilic block copolymers. Macromolecules 44:583–593. https://doi.org/10.1021/ma102232z

    Article  CAS  Google Scholar 

  8. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670. https://doi.org/10.1016/j.addr.2006.09.020

    Article  CAS  Google Scholar 

  9. Wang JZ, You ML, Ding ZQ, Ye W (2019) Bin: a review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Mater Sci Eng C 97:1021–1035. https://doi.org/10.1016/j.msec.2019.01.057

    Article  CAS  Google Scholar 

  10. Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 64:246–255. https://doi.org/10.1016/j.addr.2012.09.022

    Article  Google Scholar 

  11. Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66:1495–1505. https://doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1495::AID-APP10>3.0.CO;2-3

  12. Rufino TDC, Felisberti MI (2016) Confined PEO crystallisation in immiscible PEO/PLLA blends. RSC Adv 6:30937–30950. https://doi.org/10.1039/C6RA02406H

    Article  CAS  Google Scholar 

  13. Xu Y, Yu W, Zhou C (2014) Liquid-liquid phase separation and its effect on the crystallization in polylactic acid / poly(ethylene glycol) blends. RSC Adv 4:55435–55444. https://doi.org/10.1039/c4ra08985e

    Article  CAS  Google Scholar 

  14. Nakane K, Hata Y, Morita K, Ogihara T, Ogata N (2004) Porous poly(L-lactic acid)/poly(ethylene glycol) blend films. J Appl Polym Sci 94:965–970. https://doi.org/10.1002/app.20959

    Article  CAS  Google Scholar 

  15. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity. Polymer 44:5711–5720. https://doi.org/10.1016/S0032-3861(03)00615-3

    Article  CAS  Google Scholar 

  16. Tew GN, Sanabria-DeLong N, Agrawal SK, Bhatia SR (2005) New properties from PLA-PEO-PLA hydrogels. Soft Matter 1:253–258. https://doi.org/10.1039/b509800a

    Article  CAS  Google Scholar 

  17. Bang G, Kim SW (2012) Biodegradable poly(lactic acid)-based hybrid coating materials for food packaging films with gas barrier properties. J Ind Eng Chem 18:1063–1068. https://doi.org/10.1016/j.jiec.2011.12.004

    Article  CAS  Google Scholar 

  18. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chim 13:3–39. https://doi.org/10.1016/j.crci.2009.06.001

    Article  CAS  Google Scholar 

  19. Nicole L, Laberty-Robert C, Rozes L, Sanchez C (2014) Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale 6:6267. https://doi.org/10.1039/c4nr01788a

    Article  CAS  Google Scholar 

  20. de Zea Bermudez V, Carlos L, Duarte M, Silva M, Silva CJ, Smith M, Assunção M, Alcácer L (1998) A novel class of luminescent polymers obtained by the sol–gel approach. J Alloys Compd 275–277:21–26. https://doi.org/10.1016/S0925-8388(98)00266-7

    Article  Google Scholar 

  21. Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

    Article  CAS  Google Scholar 

  22. Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696. https://doi.org/10.1039/c0cs00136h

    Article  CAS  Google Scholar 

  23. Prebe A (2010) Different routes for synthesis of Poly(lactic acid)/silicon-based hybrid organic-inorganic nanomaterials and nanocomposites, PhD thesis, INSA de Lyon, Univ. Claude Bernard Lyon 1: Lyon, France

  24. Maeda H, Kasuga T, Hench LL (2006) Preparation of poly(L-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials 27:1216–1222. https://doi.org/10.1016/j.biomaterials.2005.08.010

    Article  CAS  Google Scholar 

  25. Jeong J, Ayyoob M, Kim JH, Nam SW, Kim YJ (2019) In situ formation of PLA-grafted alkoxysilanes for toughening a biodegradable PLA stereocomplex thin film. RSC Adv 9:21748–21759. https://doi.org/10.1039/c9ra03299a

    Article  CAS  Google Scholar 

  26. Meng X, Nguyen NA, Tekinalp H, Lara-Curzio E, Ozcan S (2018) Supertough PLA-silane nanohybrids by in situ condensation and grafting. ACS Sustain Chem Eng 6:1289–1298. https://doi.org/10.1021/acssuschemeng.7b03650

    Article  CAS  Google Scholar 

  27. Wang W, Ping P, Chen X, Jing X (2006) Polylactide-based polyurethane and its shape-memory behavior. Eur Polym J 42:1240–1249. https://doi.org/10.1016/j.eurpolymj.2005.11.029

    Article  CAS  Google Scholar 

  28. Dahmouche K, Atik M, Mello NC, Bonagamba TJ, Panepucci H, Aegerter MA, Judeinstein P (1997) Investigation of new ion-conducting ORMOLYTES: structure and properties. J Sol–Gel Sci Technol 8:711–715. https://doi.org/10.1023/A:1018353217053

    Article  CAS  Google Scholar 

  29. Gonçalves MC, de Zea Bermudez V, Sá Ferreira RA, Carlos LD, Ostrovskii D, Rocha J (2004) Optically Functional Di-Urethanesil Nanohybrids Containing Eu 3+ Ions. Chem Mater 16:2530–2543. https://doi.org/10.1021/cm0348848

    Article  CAS  Google Scholar 

  30. Dahmouche K, Santilli CV, Pulcinelli SH, Craievich AF (1999) Small-angle X-ray scattering study of sol-gel-derived siloxane-PEG and siloxane-PPG hybrid materials J Phys Chem B 103:4937–4942. https://doi.org/10.1021/jp984605h

    Article  CAS  Google Scholar 

  31. Mark JE (2009) Polymer Data Handbook, Second Edn. Oxford University Press, New York, USA

  32. Wypych G (2001) Handbook of solvents, First Edn. ChemTec Publishing, Toronto, Canada

  33. Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Structural characterization of PLA-PEO-PLA solutions and hydrogels: crystalline vs amorphous PLA domains. Macromolecules 41:1774–1784. https://doi.org/10.1021/ma070634r

    Article  CAS  Google Scholar 

  34. Woo EM, Lugito G, Tsai JH (2015) Effects of top confinement and diluents on morphology in crystallization of poly(l -lactic acid) interacting with poly(ethylene oxide). J Polym Sci B Polym Phys 53:1160–1170. https://doi.org/10.1002/polb.23756

    Article  CAS  Google Scholar 

  35. Woo EM, Lugito G, Hsieh YT, Nurkhamidah S (2014) Unusual large-pitch banding in poly(L-lactic acid): Effects of composition and geometry confinement. AIP Conf Proc 1586:7–13. https://doi.org/10.1063/1.4866721

    Article  CAS  Google Scholar 

  36. Bao RY, Yang W, Wei XF, Xie BH, Yang MB (2014) Enhanced formation of stereocomplex crystallites of high molecular weight poly(l-lactide)/poly(d-lactide) blends from melt by using poly(ethylene glycol). ACS Sustain Chem Eng 2:2301–2309. https://doi.org/10.1021/sc500464c

    Article  CAS  Google Scholar 

  37. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Plasticization of poly(L-lactide) with poly(propylene glycol). Biomacromolecules 7:2128–2135. https://doi.org/10.1021/bm060089m

    Article  CAS  Google Scholar 

  38. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2014) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104. https://doi.org/10.3390/polym6010093

    Article  CAS  Google Scholar 

  39. Cohn D, Younes H (1988) Biodegradable PEO/PLA block copolymers. J Biomed Mater Res 22:993–1009. https://doi.org/10.1002/jbm.820221104

    Article  CAS  Google Scholar 

  40. de Zea Bermudez V, Carlos LD, Alcácer L (1999) Sol−gel derived urea cross-linked organically modified silicates. 1. room temperature mid-infrared spectra. Chem Mater 11:569–580. https://doi.org/10.1021/cm980372v

    Article  Google Scholar 

  41. Grkovic M, Stojanovic DB, Kojovic A, Strnad S, Kreze T, Aleksic R, Uskokovic PS (2015) Keratin/polyethylene oxide bio-nanocomposites reinforced with ultrasonically functionalized graphene. RSC Adv 5:91280–91287. https://doi.org/10.1039/c5ra12402f

    Article  CAS  Google Scholar 

  42. Coleman MM, Skrovanek DJ, Hu J, Painter PC (1988) Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 21:59–65. https://doi.org/10.1021/ma00179a014

    Article  CAS  Google Scholar 

  43. Meaurio E, López-Rodríguez N, Sarasua JR (2006) Infrared spectrum of poly (L-lactide): application to crystallinity studies. Macromolecules 39:9291–9301. https://doi.org/10.1021/ma061890r

    Article  CAS  Google Scholar 

  44. Buruiana T, Melinte V, Popa ID, Buruiana EC (2014) New urethane oligodimethacrylates with quaternary alkylammonium for formulating dental composites New urethane oligodimethacrylates with quaternary alkylammonium for formulating dental composites. J Mater Sci Mater Med 25:1183–1194. https://doi.org/10.1007/s10856-014-5141-4

    Article  CAS  Google Scholar 

  45. Neff R, Adedeji A, Macosko CW, Ryan AJ (1998) Urea hard segment morphology in flexible polyurethane foam. J Polym Sci B Polym Phys 36:573–581. https://doi.org/10.1002/(SICI)1099-0488(199803)36:4<573::AID-POLB4>3.0.CO;2-Q

  46. Barbosa PC, Fernandes M, Vilela SMF, Gonçalves A, Oliveira MC, Fortunato E, Silva MM, Smith MJ, Rego R, Bermudez V, de Z (2011) Di-ureasil hybrids doped with LiBF 4: attractive candidates as electrolytes for “Smart Windows”. Int J Electrochem Sci 6:3355–3374

    CAS  Google Scholar 

  47. Nunes SC, de Zea Bermudez V, Ostrovskii D, Silva MM, Barros S, Smith MJ, Carlos LD, Rocha J, Morales E (2005) Diurea cross-linked poly(oxyethylene)/siloxane ormolytes for lithium batteries. J Electrochem Soc 152:A429. https://doi.org/10.1149/1.1851051

    Article  CAS  Google Scholar 

  48. Fernandes M, Nobre SS, Qinghong X, Carcel C, Cachia JN, Cattoën X, Sousa JM, Ferreira RAS, Carlos LD, Santilli CV, Wong Chi Man M, de Zea Bermudez V (2011) Self-structuring of Lamellar Bridged silsesquioxanes with long side spacers. J Phys Chem B 115:10877–10891. https://doi.org/10.1021/jp2022902

    Article  CAS  Google Scholar 

  49. Chavan JG, Rath SK, Praveen S, Kalletla S, Patri M (2016) Hydrogen bonding and thermomechanical properties of model polydimethylsiloxane based poly(urethane-urea) copolymers: Effect of hard segment content. Prog Org Coat 90:350–358. https://doi.org/10.1016/j.porgcoat.2015.06.015

    Article  CAS  Google Scholar 

  50. Das S, Yilgor I, Yilgor E, Wilkes GL (2008) Probing the urea hard domain connectivity in segmented, nonchain extended polyureas using hydrogen-bond screening agents. Polymer 49:174–179. https://doi.org/10.1016/j.polymer.2007.10.046

    Article  CAS  Google Scholar 

  51. Truffault L, Rodrigues DF, Salgado HRN, Santilli CV, Pulcinelli SH (2016) Loaded Ce-Ag organic-inorganic hybrids and their antibacterial activity. Colloids Surf B Biointerfaces 147:151–160. https://doi.org/10.1016/j.colsurfb.2016.07.061

    Article  CAS  Google Scholar 

  52. Jia W, Luo Y, Yu J, Liu B, Hu M, Chai L, Wang C (2015) Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA). Opt Express 23:26932. https://doi.org/10.1364/OE.23.026932

    Article  CAS  Google Scholar 

  53. Wesełucha-Birczyńska A, Frączek-Szczypta A, Długoń E, Paciorek K, Bajowska A, Kościelna A, Błażewicz M (2014) Application of Raman spectroscopy to study of the polymer foams modified in the volume and on the surface by carbon nanotubes. Vib Spectr 72:50–56. https://doi.org/10.1016/j.vibspec.2014.02.009

    Article  CAS  Google Scholar 

  54. Zhang J, Tashiro K, Domb AJ, Tsuji H (2006) Confirmation of disorder α form of poly(L-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp 242:274–278. https://doi.org/10.1002/masy.200651038

    Article  CAS  Google Scholar 

  55. Qin D, Kean RT (1998) Crystallinity determination of polylactide by FT-Raman spectrometry. Appl Spectr 52:488–495. https://doi.org/10.1366/0003702981943950

    Article  CAS  Google Scholar 

  56. Vano-Herrera K, Misiun A, Vogt C (2015) Preparation and characterization of poly(lactic acid)/poly(methyl methacrylate) blend tablets for application in quantitative analysis by micro Raman spectroscopy. J Raman Spectr 46:273–279. https://doi.org/10.1002/jrs.4603

    Article  CAS  Google Scholar 

  57. Sarmento VHV, Dahmouche K, Santilli CV, Pulcinelli SH (2002) Gelation of siloxane-poly(oxypropylene) composites. J Non Cryst Solids 304:134–142. https://doi.org/10.1016/S0022-3093(02)01015-3

    Article  CAS  Google Scholar 

  58. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press, Boston, USA

  59. Silva SS, Ferreira RAS, Fu L, Carlos LD, Mano JF, Reis RL, Rocha J (2005) Functional nanostructured chitosan–siloxane hybrids. J Mater Chem 15:3952. https://doi.org/10.1039/b505875a

    Article  CAS  Google Scholar 

  60. Paredes M, Pulcinelli SH, Peniche C, Gonçalves V, Santilli CV (2014) Chitosan/(ureasil-PEO hybrid) blend for drug delivery. J Sol-Gel Sci Technol 72:233–238. https://doi.org/10.1007/s10971-014-3314-8

    Article  CAS  Google Scholar 

  61. Mano JF, Wang Y, Viana JC, Denchev Z, Oliveira MJ (2004) Cold crystallization of PLLA studied by simultaneous SAXS and WAXS. Macromol Mater Eng 289:910–915. https://doi.org/10.1002/mame.200400097

    Article  CAS  Google Scholar 

  62. Huang S, Li H, Yu D, Jiang S, Chen X, An L (2013) Crystalline structures of poly(l-lactide) formed under pressure and structure transitions with heating. CrystEngComm 15:4372. https://doi.org/10.1039/c3ce26943d

    Article  CAS  Google Scholar 

  63. Ribeiro C, Sencadas V, Caparros C, Ribelles JLG, Lanceros-Méndez S (2012) Fabrication of poly(lactic acid)-poly(ethylene oxide) electrospun membranes with controlled micro to nanofiber sizes. J Nanosci Nanotechnol 12:6746–6753. https://doi.org/10.1166/jnn.2012.4544

    Article  CAS  Google Scholar 

  64. Pluta M, Galeski A (2002) Crystalline and supermolecular structure of polylactide in relation to the crystallization method. J Appl Polym Sci 86:1386–1395. https://doi.org/10.1002/app.11280

    Article  CAS  Google Scholar 

  65. Beaucage BYG (1995) Approximations leading to a unified exponential PowerLaw approach to smallangle scattering. J Appl Cryst 28:717–728. https://doi.org/10.1107/S0021889895005292

    Article  CAS  Google Scholar 

  66. Dahmouche K, Carlos LD, de Zea Bermudez V, Sá Ferreira RA, Santilli CV, Craievich AF (2001) Structural modelling of Eu3+-based siloxane–poly(oxyethylene) nanohybrids. J Mater Chem 11:3249–3257. https://doi.org/10.1039/b104822h

    Article  CAS  Google Scholar 

  67. Mohamed F (2005) Structural study of semi-crystalline blends of poly (vinylidene fluoride) and poly (methyl methacrylate) by means of linear correlation and interface distribution functions. e-Polymers 56:1–17. https://doi.org/10.1515/epoly.2005.5.1.585

    Article  Google Scholar 

  68. Doucet M, et al (2019). SasView Version 5.0.0. https://doi.org/10.5281/zenodo.3011184. Accessed 20 Jan 2020

  69. Cruz CS, Stribeck N, Zachmann HG, Calleja FJB, Estructura I, De, Materia D (1991) Novel aspects in the structure of poly (ethy1ene terephthalate) as revealed by means of small-angle X-ray scattering. Macromolecules 24(22):5980–5990. https://doi.org/10.1021/ma00022a013

    Article  Google Scholar 

  70. Wang DK, Varanasi S, Fredericks PM, Hill DJT, Symons AL, Whittaker AK, Rasoul F (2013) FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. J Polym Sci A Polym Chem 51:5163–5176. https://doi.org/10.1002/pola.26930

    Article  CAS  Google Scholar 

  71. Pamuła E, Błażewicz M, Paluszkiewicz C, Dobrzyński P (2001) FTIR study of degradation products of aliphatic polyesters–carbon fibres composites. J Mol Struct 596:69–75. https://doi.org/10.1016/S0022-2860(01)00688-3

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) Finance Code 001. Instituto de Química of UNESP (Araraquara, Brazil) for Si29 NMR results. Centro de Tecnologia Mineral-CETEM of UFRJ (Rio de Janeiro, Brazil) for the opportunity of SEM and Raman measurements. Helmholtz-Zentrum Berlin für Materialien und Energie (Germany), for the SEM Images at high magnification. Laboratório Nacional de Luz Síncrotron (LNLS, Campinas, Brazil) for providing beamtime in the line SAXS1 (Proposal ID:20190043) and XRD beamlines. This work benefited from the use of the SasView application, originally developed under NSF award DMR-0520547. SasView contains code developed with funding from the European Union’s Horizon 2020 research and innovation program under the SINE2020 project, grant agreement No 654000.

Author contributions

ROS: Conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft, and visualization; JMR: validation, investigation; ACS: conceptualization, methodology, resources, writing review and editing, funding acquisition; KD: conceptualization, methodology, resources, writing review and editing, supervision, project administration, funding acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranielle de Oliveira Silva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.d.O., Silvino, A.C., Ribeiro, J.M. et al. Novel sol–gel derived PLA-siloxane-PEO nanocomposite with enhanced thermal properties and hydrolytic stability. J Sol-Gel Sci Technol 99, 512–526 (2021). https://doi.org/10.1007/s10971-021-05611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05611-0

Keywords

Navigation