Skip to main content
Log in

Solution processed glass/fluorine-doped tin oxide/aluminum-doped zinc oxide double layer thin films for transparent heater and near-infrared reflecting applications

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Double layer glass/fluorine-doped tin oxide (FTO)/aluminum-doped zinc oxide (AZO) multifunctional thin films were achieved via ultrasonic spray pyrolysis (USP) method without employing a post-deposition annealing. Transparent heater and near-infrared heat reflection behaviors were investigated. The samples were characterized in terms of their structural, morphological, optical, and electrical properties. The top AZO layer exhibited a polycrystalline structure without any preferred orientation. The double layer structure showed very high average transmittance (87%, 400–700 nm) in the visible and reflectance (55%, 2500 nm) in the near-infrared, regions. In addition, the sheet resistance and resistivity of the film were measured as 14.85 (Ω sq−1) and 1.78 × 10−3 (Ω cm), respectively. The saturation temperature, response time, surface temperature uniformity, areal power density, and thermal resistance values were found to be 111 °C, 174 s, 11.42%, 0.299 W/cm2, and 282.8 °C cm2 W−1 for a sample with an active area of 31.5 cm2 and input voltage of 9 V. In addition, dry-ice cooled samples (−25 °C) showed impressive deicing performance depending on the input power. In case of 12 V, all ice was defrosted, and water droplets were evaporated within 2 min and 10 s. During this process, a heating rate of ⁓43 °C/min was achieved.

Highlights

  • Glass/FTO/AZO double layer thin films were achieved using ultrasonic spray pyrolysis.

  • No post-deposition annealing was applied.

  • Relatively large area transparent heater and near-infrared heat reflecting mirror was produced.

  • 55% reflectance at 2500 nm and deicing in 130 s with low voltage was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mcmaster HA (1947) Conductive coating for glass and method of application 2,429,420

  2. Piegari A, Flory F (2013) Optical Thin Films and Coatings: From Materials to Applications. Woodhead Publishing, Sawston, Cambridge

  3. Kim H-J, Kim D-I, Kim S-S et al. (2017) Observation of convection phenomenon by high-performance transparent heater based on Pt-decorated Ni micromesh. AIP Adv 7:025112

    Article  CAS  Google Scholar 

  4. Sannicolo T, Lagrange M, Cabos A, Celle C, Simonato JP, Bellet D (2016) Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12:6052–6075

    Article  CAS  Google Scholar 

  5. Celle C, Mayousse C, Moreau E, Basti H, Carella A, Simonato J-P (2012) Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 5:427–433

    Article  CAS  Google Scholar 

  6. Jayathilake DSY, Sagu JS, Wijayantha KGU (2019) Transparent heater based on Al,Ga co-doped ZnO thin films. Mater Lett 237:249–252

    Article  CAS  Google Scholar 

  7. Kang TJ, Kim T, Seo SM, Park YJ, Kim YH (2011) Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 49:1087–1093

    Article  CAS  Google Scholar 

  8. Kang J, Kim H, Kim KS et al. (2011) High-performance graphene-based transparent flexible heaters. Nano Lett 11:5154–5158

    Article  CAS  Google Scholar 

  9. Ergun O, Coskun S, Yusufoglu Y, Unalan HE (2016) High-performance, bare silver nanowire network transparent heaters. Nanotechnology 27:445708

    Article  CAS  Google Scholar 

  10. Gupta R, Rao KD, Kiruthika S, Kulkarni GU (2016) Visibly transparent heaters. ACS Appl Mater Interfaces 8:12559–12575

    Article  CAS  Google Scholar 

  11. Papanastasiou DT, Schultheiss A, Muñoz‐Rojas D et al. (2020) Transparent heaters: a review. Adv Funct Mater 30:1910225

    Article  CAS  Google Scholar 

  12. Minami T (2008) Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications. Thin Solid Films 516:1314–1321

    Article  CAS  Google Scholar 

  13. Seo S-W, Won SH, Chae H, Cho SM (2012) Low-temperature growth of highly conductive and transparent aluminum-doped ZnO film by ultrasonic-mist deposition. Korean J Chem Eng 29:525–528

    Article  CAS  Google Scholar 

  14. Mallick A, Ghosh S, Basak D (2020) Highly conducting and transparent low-E window films with high figure of merit values based on RF sputtered Al and In co-doped ZnO. Mater Sci Semiconductor Process 119:105240

    Article  CAS  Google Scholar 

  15. Can HA, Tönbül B, Pişkin F, Öztürk T, Akyıldız H (2021) Processing optimization of SiO2-capped aluminum-doped ZnO thin films for transparent heater and near-infrared reflecting applications. J Mater Sci: Mater Electron 32:5116–5137

    CAS  Google Scholar 

  16. Hagendorfer H, Lienau K, Nishiwaki S et al. (2014) Highly transparent and conductive ZnO: Al thin films from a low temperature aqueous solution approach. Adv Mater 26:632–636

    Article  CAS  Google Scholar 

  17. Wang Z, Li J, Xu J et al. (2020) Robust ultrathin and transparent AZO/Ag-SnO/AZO on polyimide substrate for flexible thin film heater with temperature over 400°C. J Mater Sci Technol 48:156–162

    Article  Google Scholar 

  18. Barman D, Sarma BK (2020) Thin and flexible transparent conductors with superior bendability having Al-doped ZnO layers with embedded Ag nanoparticles prepared by magnetron sputtering. Vacuum 177:109367

    Article  CAS  Google Scholar 

  19. Ghosh S, Mallick A, Dou B, van Hest MFAM, Garner SM, Basak D (2018) A novel blanket annealing process to achieve highly transparent and conducting Al doped ZnO thin films: Its mechanism and application in perovskite solar cells. Sol Energy 174:815–825

    Article  CAS  Google Scholar 

  20. Miao DG, Jiang SX, Shang SM, Chen ZM, Liu J (2014) Infrared reflective property of AZO films prepared by RF magnetron sputtering. Mater Technol 29:321–325

    Article  CAS  Google Scholar 

  21. Gong L, Ye Z, Lu J et al. (2010) Highly transparent conductive and near-infrared reflective ZnO:Al thin films. Vacuum 84:947–952

    Article  CAS  Google Scholar 

  22. Das R, Ray S (2003) Zinc oxide—a transparent, conducting IR-reflector prepared by rf-magnetron sputtering. J Phys D: Appl Phys 36:152–155

    Article  CAS  Google Scholar 

  23. Ni J, Zhao Q, Zhao X (2009) Transparent and high infrared reflection film having sandwich structure of SiO2/Al:ZnO/SiO2. Prog Org Coat 64:317–321

    Article  CAS  Google Scholar 

  24. Miao D, Jiang S, Shang S, Chen Z (2014) Effect of heat treatment on infrared reflection property of Al-doped ZnO films. Sol Energy Mater Sol Cells 127:163–168

    Article  CAS  Google Scholar 

  25. Babu BJ, Velumani S, Asomoza R (2011) An (ITO or AZO)/ZnO/Cu(In1-xGax)Se2 superstrate thin film solar cell structure prepared by spray pyrolysis. In: Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 001238-001243

  26. Xu J, Wang H, Yang L, Jiang M, Wei S, Zhang T (2010) Low temperature growth of highly crystallized ZnO:Al films by ultrasonic spray pyrolysis from acetylacetone salt. Mater Sci Eng: B 167:182–186

    Article  CAS  Google Scholar 

  27. Marouf S, Beniaiche A, Kardarian K et al. (2017) Low-temperature spray-coating of high-performing ZnO:Al films for transparent electronics. J Anal Appl Pyrolysis 127:299–308

    Article  CAS  Google Scholar 

  28. Chen F-K, Tsai D-C, Chang Z-C, Chen E-C, Shieu F-S (2020) Influence of Al content and annealing atmosphere on optoelectronic characteristics of Al:ZnO thin films. Appl Phys A 126:743

    Article  CAS  Google Scholar 

  29. Ikhmayies SJ, Abu El-Haija NM, Ahmad-Bitar RN (2010) Electrical and optical properties of ZnO:Al thin films prepared by the spray pyrolysis technique. Phys Scr 81:015703

    Article  CAS  Google Scholar 

  30. Babu BJ, Maldonado A, Velumani S, Asomoza R (2010) Electrical and optical properties of ultrasonically sprayed Al-doped zinc oxide thin films. Mater Sci Eng: B 174:31–37

    Article  CAS  Google Scholar 

  31. Crossay A, Buecheler S, Kranz L et al. (2012) Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells. Sol Energy Mater Sol Cells 101:283–288

    Article  CAS  Google Scholar 

  32. Babu BJ, Velumani S, Arenas-Alatorre J et al. (2014) Structural properties of ultrasonically sprayed Al-doped ZnO (AZO) thin films: effect of ZnO buffer layer on AZO. J Electron Mater 44:699–705

    Article  CAS  Google Scholar 

  33. Rivera MJ, Ramírez EB, Juárez B et al. (2016) Low temperature-pyrosol-deposition of aluminum-doped zinc oxide thin films for transparent conducting contacts. Thin Solid Films 605:108–115

    Article  CAS  Google Scholar 

  34. Gençyılmaz O, Atay F, Akyüz I (2015) Deposition and ellipsometric characterization of transparent conductive Al-doped ZnO for solar cell application. J Clean Energy Technol 4:90–94

    Article  Google Scholar 

  35. Karzazi O, Soussi L, Louardi A et al. (2019) Transparent conducting properties of Mg and Al co-doped ZnO thin films deposited by spray pyrolysis technique. Superlattices Microstruct 127:61–65

    Article  CAS  Google Scholar 

  36. Ozório MS, Nascimento MR, Vieira DH et al. (2019) AZO transparent electrodes grown in situ during the deposition of zinc acetate dihydrate onto aluminum thin film by spray pyrolysis. J Mater Sci: Mater Electron 30:13454–13461

    Google Scholar 

  37. Kenanakis G, Katsarakis N (2014) Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: application to photocatalysis. Mater Res Bull 60:752–759

    Article  CAS  Google Scholar 

  38. Deva Arun Kumar K, Mele P, Ponraj JS et al. (2020) Methanol solvent effect on photosensing performance of AZO thin films grown by nebulizer spray pyrolysis. Semicond Sci Technol 35:085013

    Article  CAS  Google Scholar 

  39. Tönbül B, Can HA, Öztürk T, Akyıldız H (2021) Solution processed aluminum-doped ZnO thin films for transparent heater applications. Mater Sci Semicond Process 127:105735

    Article  CAS  Google Scholar 

  40. Yu J, Gao Y, Wang L et al. (2018) Anti-reductive properties of AZO/FTO bilayered transparent conducting films. Surf Eng 36:1–5

    Article  CAS  Google Scholar 

  41. Chantarat N, Hsu S-H, Lin C-C, Chiang M-C, Chen S-Y (2012) Mechanism of an AZO-coated FTO film in improving the hydrogen plasma durability of transparent conducting oxide thin films for amorphous-silicon based tandem solar cells. J Mater Chem 22:8005–8012

    Article  CAS  Google Scholar 

  42. Ravichandran K, Jabena Begum N, Swaminathan K, Sakthivel B (2013) Fabrication of a double layered FTO/AZO film structure having enhanced thermal, electrical and optical properties, as a substitute for ITO films. Superlattices Microstruct 64:185–195

    Article  CAS  Google Scholar 

  43. Ahn K, Jeong YS, Lee HU et al. (2010) Physical properties of hydrogenated Al-doped ZnO thin layer treated by atmospheric plasma with oxygen gas. Thin Solid Films 518:4066–4070

    Article  CAS  Google Scholar 

  44. Ravikumar P, Ravichandran K, Sakthivel B (2012) Effect of thickness of SnO2:F over layer on certain physical properties of ZnO:Al thin films for opto-electronic applications. J Mater Sci Technol 28:999–1003

    Article  CAS  Google Scholar 

  45. Kim DH, Cho KS, Kim HK (2017) Thermally evaporated indium-free, transparent, flexible SnO2/AgPdCu/SnO2 electrodes for flexible and transparent thin film heaters. Sci Rep 7:2550

    Article  CAS  Google Scholar 

  46. Kim YR, Jung JH, Yong SM, Hong JW, Lee SJ, Park JW (2021) Design of patterned fluorine-doped tin oxide for radome de-icing heater. J Phys D: Appl Phys 54:105301

    Article  CAS  Google Scholar 

  47. Ke S, Xie J, Chen C et al. (2018) van der Waals epitaxy of Al-doped ZnO film on mica as a flexible transparent heater with ultrafast thermal response. Appl Phys Lett 112:031905

    Article  CAS  Google Scholar 

  48. Kim AY, Lee K, Park JH, Byun D, Lee JK (2014) Double-layer effect on electrothermal properties of transparent heaters. Phys Status Solidi (a) 211:1923–1927

    Article  CAS  Google Scholar 

  49. Cebulla R, Wendt R, Ellmer K (1998) Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: relationships between plasma parameters and structural and electrical film properties. J Appl Phys 83:1087–1095

    Article  CAS  Google Scholar 

  50. Stenzel O (2005) The Physics of Thin Film Optical Spectra. Springer, Berlin, Germany

  51. Haacke G (1976) New figure of merit for transparent conductors. J Appl Phys 47:4086–4089

    Article  CAS  Google Scholar 

  52. Arii T, Kishi A (2003) The effect of humidity on thermal process of zinc acetate. Thermochim Acta 400:175–185

    Article  CAS  Google Scholar 

  53. Djelloul A, Bouzid K, Guerrab F (2008) Role of substrate temperature on the structural and morphological properties of ZnO thin films deposited by ultrasonic spray pyrolysis. Turk J Phys 32:49–58

    CAS  Google Scholar 

  54. Liu J, Yang Z, Lin S et al. (2020) Compact and ultrathin multi-element oxide films grown by temperature-controlled deposition and their surface-potential based transistor theoretical simulation model. J Mater Chem C 8:7358–7368

    Article  CAS  Google Scholar 

  55. Lide DR (2006/2007) Handbook of Chemistry and Physics, 87th edition. CRC Press, Boca Raton

  56. NIST database (2021) http://www.webbook.nist.gov/chemistry/

  57. Fan P, Zheng Z-h, Li Y-z et al. (2015) Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials Appl Phys Lett 106:073901

    Article  CAS  Google Scholar 

  58. Garcés FA, Budini N, Schmidt JA, Arce RD (2016) Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications. Thin Solid Films 605:149–156

    Article  CAS  Google Scholar 

  59. Shokri A, Dejam L (2018) Experimental and theoretical investigations on temperature and voltage dependence of an Au/AZO thin-film Schottky diode. Int Nano Lett 9:161–168

    Article  CAS  Google Scholar 

  60. Garcés FA, Budini N, Arce RD, Schmidt JA (2015) Thickness dependence of crystalline structure of Al-doped ZnO thin films deposited by spray pyrolysis. Procedia. Procedia Mater Sci 9:221–229

    Article  CAS  Google Scholar 

  61. Salam S, Islam M, Akram A (2013) Sol–gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells. Thin Solid Films 529:242–247

    Article  CAS  Google Scholar 

  62. Lennon C, Tapia RB, Kodama R, Chang Y, Sivananthan S, Deshpande M (2009) Effects of annealing in a partially reducing atmosphere on sputtered Al-doped ZnO thin films. J Electron Mater 38:1568–1573

    Article  CAS  Google Scholar 

  63. Potter DB, Parkin IP, Carmalt CJ (2018) The effect of solvent on Al-doped ZnO thin films depositedviaaerosol assisted CVD. RSC Adv 8:33164–33173

    Article  CAS  Google Scholar 

  64. Tang K, Gu S, Liu J, Ye J, Zhu S, Zheng Y (2015) Effects of indium doping on the crystallographic, morphological, electrical, and optical properties of highly crystalline ZnO films. J Alloy Compd 653:643–648

    Article  CAS  Google Scholar 

  65. Hamada K, Ogawa T, Okumura H, Ishihara KN (2019) The effect of substrate roughness on the properties of RF sputtered AZO thin film. MRS Commun 9:697–701

    Article  CAS  Google Scholar 

  66. Cojocaru L, Uchida S, Jayaweera PVV et al. (2017) Effect of TiO2 surface treatment on the current-voltage hysteresis of planar-structure perovskite solar cells prepared on rough and flat fluorine-doped tin oxide substrates. Energy Technol 5:1762–1766

    Article  CAS  Google Scholar 

  67. Ge CY, Rahman MM, Zhang W et al. (2020) An electrochemical immunosensor based on a self-assembled monolayer modified electrode for label-free detection of alpha-Synuclein. Sensors 20:617

    Article  CAS  Google Scholar 

  68. Kim Y-R, Park J-W, Park S-H, Lee S-J (2020) Radio-frequency and optically transparent radome de-icing materials: fluorine-doped tin oxide. RSC Adv 10:35979–35987

    Article  CAS  Google Scholar 

  69. Lim JH, Leem JW, Yu JS (2015) Solar power generation enhancement of dye-sensitized solar cells using hydrophobic and antireflective polymers with nanoholes. RSC Adv 5:61284–61289

    Article  CAS  Google Scholar 

  70. Polyanskiy M (2008–2021) RefractiveIndex.INFO. https://refractiveindex.info/

  71. Pan Q, Song X (2017) Al-doped ZnO films deposited by magnetron sputtering: effect of sputtering parameters on the electrical and optical properties. Mater Sci-Pol 35:374–381

    Article  CAS  Google Scholar 

  72. Tang W, Cameron DC (1994) Aluminum-doped zinc oxide transparent conductors deposited by the sol–gel process. Thin Solid Films 238:83–87

    Article  CAS  Google Scholar 

  73. Sun L, Grant JT, Jones JG, Murphy NR (2018) Tailoring electrical and optical properties of Al-doped ZnO thin films grown at room temperature by reactive magnetron co-sputtering: from band gap to near infrared. Optical Mater 84:146–157

    Article  CAS  Google Scholar 

  74. Miao D, Jiang S, Shang S, Chen Z (2014) Infrared reflective properties of AZO/Ag/AZO trilayers prepared by RF magnetron sputtering. Ceram Int 40:12847–12853

    Article  CAS  Google Scholar 

  75. Miao D, Zhao H, Peng Q, Shang S, Jiang S (2015) Fabrication of high infrared reflective ceramic films on polyester fabrics by RF magnetron sputtering. Ceram Int 41:1595–1601

    Article  CAS  Google Scholar 

  76. Miao D, Jiang S, Shang S, Chen Z (2014) Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106:1–4

    Article  CAS  Google Scholar 

  77. Lee C, Dwivedi RP, Lee W, Hong C, Lee WI, Kim HW (2007) IZO/Al/GZO multilayer films to replace ITO films. J Mater Sci: Mater Electron 19:981–985

    Google Scholar 

  78. Jose FP, Achary SR, Sukumaran AA, Jayaraj MK (2020) Effects of temperature and doping on aluminium doped ZnO thin film grown by spray pyrolysis. In: Proceedings of the International Conference on Physics of Materials and Nanotechnology (ICPN), vol 2244, p 110005

  79. Ravichandran K, Jabena Begum N, Snega S, Sakthivel B (2014) Properties of sprayed aluminum-doped zinc oxide films—a review. Mater Manuf Process 31:1411–1423

    Article  CAS  Google Scholar 

  80. Luangchaisri C, Dumrongrattana S, Rakkwamsuk P (2012) Effect of heat treatment on electrical properties of fluorine doped tin dioxide films prepared by ultrasonic spray pyrolysis technique. Procedia Eng 32:663–669

    Article  CAS  Google Scholar 

  81. Muiva CM, Sathiaraj TS, Maabong K (2011) Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram Int 37:555–560

    Article  CAS  Google Scholar 

  82. Hudaya C, Jeon BJ, Lee JK (2015) High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots. ACS Appl Mater Interfaces 7:57–61

    Article  CAS  Google Scholar 

  83. Hwang H, Ma KY, Kim JW et al. (2020) Radio-frequency-transmitting hexagonal boron nitride-based anti- and de-icing heating system. Nanoscale 12:21895–21900

    Article  CAS  Google Scholar 

  84. Hudaya C, Park JH, Lee JK (2012) Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films. Nanoscale Res Lett 7:1–4

    Article  Google Scholar 

  85. Baldasseroni C, Queen DR, Cooke DW, Maize K, Shakouri A, Hellman F (2011) Heat transfer simulation and thermal measurements of microfabricated x-ray transparent heater stages. Rev Sci Instrum 82:093904

    Article  CAS  Google Scholar 

  86. DONTECH (2019) Transparent heaters. https://dontech.com/transparent-heaters/

  87. Volman V, Tour JM, Zhu Y, Raji A-RO (2013) Conductive graphene nanoribbon thin film as heat circuit for antennas and radomes. In: Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, 14094648

  88. NISSHA (2021) Transparent film heater. https://connect.nissha.com/filmdevice/en/transparent_film_heater/

Download references

Acknowledgements

This study was produced from the MSc thesis of Beyza TÖNBÜL and supported financially by the Scientific and Technological Research Council of Turkey (TÜBİTAK; Project Number: 118M013), for which the authors are thankful. We would also like to thank to İ. Cihan KAYA and Volkan KALEM for their help in solving some technical issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Akyıldız.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tönbül, B., Can, H.A., Öztürk, T. et al. Solution processed glass/fluorine-doped tin oxide/aluminum-doped zinc oxide double layer thin films for transparent heater and near-infrared reflecting applications. J Sol-Gel Sci Technol 99, 482–496 (2021). https://doi.org/10.1007/s10971-021-05591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05591-1

Keywords

Navigation