Skip to main content

Advertisement

Log in

Resin-based sealant containing sol–gel derived bioactive glass: ion release and biological response

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the effect of bioactive glass (BAG) loading on the ion release, pH changes, and cell response of the experimental pit and fissure sealant containing sol–gel derived 58S BAG. The BAG and silica filler in different proportion were incorporated into a resin matrix with the final filler loading of 50% in all groups. The specimens were immersed in deionized water (pH 5.8) or lactic acid solution (pH 4.0) at different time points (6 h, 1, 7, 14, 30, and 45 days) for ion release and pH changes assessment. Biological properties were evaluated using MTS assay, alkaline phosphatase (ALP) assays, and alizarin red staining. In the deionized water, the BAG50% group pH reaches to 9.3 and in lactic acid solution to 4.31 after 45 days. The BAG filler percentage did not have a significant effect on ion release in the deionized water. However, ion release increased with the pH reduction, particularly in the BAG50% group. The BAG50% group showed less cytotoxicity and higher ALP activity and calcified nodule formation. The experimental pit and fissure sealant with 50% BAG filler loading exhibited an appropriate increase in pH elevation, ion release, and cell proliferation and differentiation. Therefore, it can be concluded that this bioactive sealant has the potential to hinder secondary caries and can be used as a caries-inhibiting material.

Highlights

  • A resin-based sealant containing sol-gel derived bioactive glass was developed.

  • The experimental sealant showed acceptable ion release and pH elevation.

  • In-vitro biocompatibility test of the experimental sealant showed favorable results.

  • Addition of 50% 58S BAG filler to resin matrix makes the sealant bioactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weintraub J (2001) Pit and fissure sealants in high-caries-risk individuals. J Dent Educ 65:1084

    Article  CAS  Google Scholar 

  2. Naaman R, El-Housseiny AA, Alamoudi N (2017) The use of pit and fissure sealants—a literature review. Dent J 5:34

    Article  Google Scholar 

  3. Yang S-Y, Piao Y-Z, Kim S-M, Lee Y-K, Kim K-N, Kim K-M (2013) Acid neutralizing, mechanical and physical properties of pit and fissure sealants containing melt-derived 45S5 bioactive glass. Dent Mater 29:1228–1235. https://doi.org/10.1016/j.dental.2013.09.007

    Article  CAS  Google Scholar 

  4. Yang S-Y, Kwon J-S, Kim K-N, Kim K-M (2016) Enamel surface with pit and fissure sealant containing 45S5 bioactive glass. J Dent Res 95:550–557. https://doi.org/10.1177/0022034515626116

    Article  CAS  Google Scholar 

  5. Fontana M, Platt JA, Eckert GJ, González-Cabezas C, Yoder K, Zero DT, Ando M, Soto-Rojas AE, Peters MC (2014) Monitoring of sound and carious surfaces under sealants over 44 months. J Dent Res 93:1070–1075. https://doi.org/10.1177/0022034514551753

    Article  CAS  Google Scholar 

  6. Hevinga M, Opdam N, Frencken J, Bronkhorst E, Truin G (2007) Microleakage and sealant penetration in contaminated carious fissures. J Dent 35:909–914. https://doi.org/10.1016/j.jdent.2007.09.001

    Article  CAS  Google Scholar 

  7. Cheng L, Weir MD, Xu HHK, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X (2012) Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 28:561–572. https://doi.org/10.1016/j.dental.2012.01.005

    Article  CAS  Google Scholar 

  8. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141

    Article  Google Scholar 

  9. Wheeler DL, Stokes KE, Hoellrich RG, Chamberland DL, McLoughlin SW (1998) Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res 41:527–533. https://doi.org/10.1002/(sici)1097-4636(19980915)41:4<527::aid-jbm3>3.0.co;2-e

    Article  CAS  Google Scholar 

  10. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017. https://doi.org/10.1126/science.1067404

    Article  CAS  Google Scholar 

  11. Hench LL (1989) Bioceramics and the origin of life. J Biomed Mater Res 23:685–703. https://doi.org/10.1002/jbm.820230703

    Article  CAS  Google Scholar 

  12. Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978. https://doi.org/10.1007/s10856-006-0432-z

    Article  CAS  Google Scholar 

  13. Al-Eesa NA, Johal A, Hill RG, Wong FSL (2018) Fluoride containing bioactive glass composite for orthodontic adhesives—apatite formation properties. Dent. Mater 34:1127–1133. https://doi.org/10.1016/j.dental.2018.04.009

    Article  CAS  Google Scholar 

  14. Chen J, Zeng L, Chen X, Liao T, Zheng J (2018) Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro. Bioact Mater 3:315–321. https://doi.org/10.1016/j.bioactmat.2017.11.004

    Article  Google Scholar 

  15. Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2:231–239. https://doi.org/10.1002/jab.770020403

    Article  CAS  Google Scholar 

  16. Mitchell JC, Musanje L, Ferracane JL (2011) Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dent Mater 27:386–393. https://doi.org/10.1016/j.dental.2010.11.019

    Article  CAS  Google Scholar 

  17. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel–derived 58S bioactive glasses. J Biomed Mater Res 58:734–740

    Article  CAS  Google Scholar 

  18. Chigira H, Manabe A, Hasegawa T, Yukitani W, Fujimitsu T, Itoh K, Hisamitsu H, Wakumoto S (1994) Efficacy of various commercial dentin bonding systems. Dent Mater 10:363–368. https://doi.org/10.1016/0109-5641(94)90060-4

    Article  CAS  Google Scholar 

  19. Geiger SB, Gulayev S, Weiss EI (2000) Improving fissure sealant quality: mechanical preparation and filling level. J Dent 28:407–412. https://doi.org/10.1016/s0300-5712(00)00016-6

    Article  CAS  Google Scholar 

  20. Moreau JL, Sun L, Chow LC, Xu HHK (2011) Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B Appl Biomater 98B:80–88. https://doi.org/10.1002/jbm.b.31834

    Article  CAS  Google Scholar 

  21. Itota T, Nakatsuka T, Tanaka K, Tashiro Y, McCabe JF, Yoshiyama M (2010) Neutralizing effect by resin-based materials containing silane-coated glass fillers. Dent Mater J 29:362–368. https://doi.org/10.4012/dmj.2009-108

    Article  CAS  Google Scholar 

  22. Dawes C (2003) What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 69:722–724

    Google Scholar 

  23. Touger-Decker R, van Loveren C (2003) Sugars and dental caries. Am J Clin Nutr 78:881S–892S. https://doi.org/10.1093/ajcn/78.4.881S

    Article  CAS  Google Scholar 

  24. Li X, Wang J, Joiner A, Chang J (2014) The remineralisation of enamel: a review of the literature. J Dent 42(Suppl 1):S12–20. https://doi.org/10.1016/S0300-5712(14)50003-6

    Article  CAS  Google Scholar 

  25. Weir MD, Ruan J, Zhang N, Chow LC, Zhang K, Chang X, Bai Y, Xu HHK (2017) Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions. Dent. Mater. Off. Publ. Acad Dent Mater 33:1033–1044. https://doi.org/10.1016/j.dental.2017.06.015

    Article  CAS  Google Scholar 

  26. Cury JA, Francisco SB, Simões GS, Del Bel Cury AA, Tabchoury CPM (2003) Effect of a calcium carbonate-based dentifrice on enamel demineralization in situ. Caries Res 37:194–199. https://doi.org/10.1159/000070444

    Article  CAS  Google Scholar 

  27. Reynolds EC, Cai F, Shen P, Walker GD (2003) Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum. J Dent Res 82:206–211. https://doi.org/10.1177/154405910308200311

    Article  CAS  Google Scholar 

  28. Zhang K, Zhang N, Weir MD, Reynolds MA, Bai Y, Xu HHK (2017) Bioactive dental composites and bonding agents having remineralizing and antibacterial characteristics. Dent Clin North Am 61:669–687. https://doi.org/10.1016/j.cden.2017.05.002

    Article  Google Scholar 

  29. Davis HB, Gwinner F, Mitchell JC, Ferracane JL (2014) Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass. Dent Mater 30:1187–1194. https://doi.org/10.1016/j.dental.2014.07.012

    Article  CAS  Google Scholar 

  30. Cenci MS, Pereira-Cenci T, Cury JA, Ten Cate JM (2009) Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model. Caries Res 43:97–102. https://doi.org/10.1159/000209341

    Article  CAS  Google Scholar 

  31. Chacko Y, Lakshminarayanan L (2001) pH stabilizing properties of a posterior light cured resin composite: an in vivo study. Oper Dent 26:219–222

    CAS  Google Scholar 

  32. Featherstone JDB (2004) The continuum of dental caries–evidence for a dynamic disease process. J Dent Res 83(Spec No C):C39–42. https://doi.org/10.1177/154405910408301s08

    Article  Google Scholar 

  33. Deng DM, ten Cate JM (2004) Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor. Caries Res 38:54–61. https://doi.org/10.1159/000073921

    Article  CAS  Google Scholar 

  34. Stoor P, Söderling E, Salonen JI (1998) Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand 56:161–165. https://doi.org/10.1080/000163598422901

    Article  CAS  Google Scholar 

  35. Ferracane JL (1994) Elution of leachable components from composites. J Oral Rehabil 21:441–452. https://doi.org/10.1111/j.1365-2842.1994.tb01158.x

    Article  CAS  Google Scholar 

  36. Ferracane JL (2006) Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22:211–222. https://doi.org/10.1016/j.dental.2005.05.005

    Article  CAS  Google Scholar 

  37. Matsumoto T, Kawakami M, Kuribayashi K, Takenaka T, Minamide A, Tamaki T (1999) Effects of sintered bovine bone on cell proliferation, collagen synthesis, and osteoblastic expression in MC3T3-E1 osteoblast-like cells. J Orthop Res 17:586–592. https://doi.org/10.1002/jor.1100170419

    Article  CAS  Google Scholar 

  38. Ogata K, Imazato S, Ehara A, Ebisu S, Kinomoto Y, Nakano T, Umakoshi Y (2005) Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites. J Biomed Mater Res A 72A:127–135. https://doi.org/10.1002/jbm.a.30146

    Article  CAS  Google Scholar 

  39. Mortazavi V, Nahrkhalaji MM, Fathi MH, Mousavi SB, Esfahani BN (2010) Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria. J Biomed Mater Res A 94:160–168. https://doi.org/10.1002/jbm.a.32678

    Article  CAS  Google Scholar 

  40. Wu T, Xu C, Du R, Wen Y, Chang J, Huan Z, Zhu Y (2018) Effects of silicate-based composite material on the proliferation and mineralization behaviors of human dental pulp cells: an in vitro assessment. Dent Mater J 37:889–896. https://doi.org/10.4012/dmj.2017-328

    Article  CAS  Google Scholar 

  41. Malaval L, Liu F, Roche P, Aubin JE (1999) Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J Cell Biochem 74:616–627

    Article  CAS  Google Scholar 

  42. Beck Jr GR, Sullivan EC, Moran E, Zerler B (1998) Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem 68:269–280. https://doi.org/10.1002/(SICI)1097-4644(19980201)68:2<269::AID-JCB13>3.0.CO;2-A

    Article  CAS  Google Scholar 

  43. Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K, Ito K (2006) Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J 39:415–422. https://doi.org/10.1111/j.1365-2591.2006.01097.x

    Article  CAS  Google Scholar 

  44. Rashid F, Shiba H, Mizuno N, Mouri Y, Fujita T, Shinohara H, Ogawa T, Kawaguchi H, Kurihara H (2003) The effect of extracellular calcium ion on gene expression of bone-related proteins in human pulp cells. J Endod 29:104–107. https://doi.org/10.1097/00004770-200302000-00004

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Ministry of Education, Culture, Sport, Science and Technology, Japan (MEXT), and was financially supported by Grant-in-Aid (Nos 19K10250 and 18K09686) for Scientific Research of the Japan Society for the Promotion of Science. The graphical abstract was created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design; material preparation, data collection, and analysis; and read and approved the final manuscript. The first draft of the manuscript was written by SJ and all authors commented on previous versions of the manuscript. The principal author of this article is SJ.

Corresponding author

Correspondence to Alireza Valanezhad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarnia, S., Valanezhad, A., Abe, S. et al. Resin-based sealant containing sol–gel derived bioactive glass: ion release and biological response. J Sol-Gel Sci Technol 107, 96–104 (2023). https://doi.org/10.1007/s10971-021-05551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05551-9

Keywords

Navigation