Skip to main content
Log in

Chiral self-assembly and water effect on a supramolecular organogel stable towards aqueous interfaces

  • Invited Paper: Supramolecular materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Herein, we report on the stabilizing effect of water and the chiral self-assembly mode of a cholesterol-based low-molecular-weight supramolecular organogelator. Dynamic rheology experiments performed on gels prepared in methanol and methanol–water mixtures showed an enhanced strength and rigidity in the presence of water, in line with the thermal stability previously observed. Morphological characterization experiments (scanning electron microscopy and X-ray powder diffraction) were performed on aerogels obtained after solvent extraction with supercritical CO2. Concentration- and temperature-dependent proton nuclear magnetic resonance and electronic circular dichroism experiments confirmed that the molecules of gelator self-assemble with a dominant right-handed helicity through intermolecular hydrogen bond interactions between the carbamate groups, and that the addition of water does not affect either the mode of assembly or the chirality of the supramolecular structure. Computational simulation experiments allowed us to propose a mode of self-assembly compatible with the experimental results, which involves a unidimensional head-to-tail stacking of molecules. A methanolic gel was successfully used as a molecular template for the in situ hydrolytic sol-gel polymerization of tetraethyl orthosilicate giving rise to silica nanotubes with an internal diameter of 7 nm.

Highlights

  • Water effect on a low-molecular-weight gel based on cholesterol and a benzyloxycarbamate group.

  • Water increases the thermostability, strength, and rigidity of a supramolecular organogel.

  • Intermolecular H-bonding interactions are involved in the 1D chiral self-assembly.

  • The organogel was used as a template for in situ sol-gel polymerization of TEOS into silica nanotubes.

  • The presence of water does not affect the mode of self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Avinash MB, Govindaraju T (2018) Architectonics: design of molecular architecture for functional applications. Acc Chem Res. https://doi.org/10.1021/acs.accounts.7b00434

  2. Amabilino DB, Smith DK, Steed JW (2017) Supramolecular materials. Chem Soc Rev 46:2404–2420

    Article  CAS  Google Scholar 

  3. Draper ER, Adams DJ (2017) Low-molecular-weight gels: the state of the art. Elsevier Inc

    Google Scholar 

  4. Jones CD, Steed JW (2016) Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 45:6546–6596

    Article  CAS  Google Scholar 

  5. Yu X, Chen L, Zhang M, Yi T (2014) Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem Soc Rev 43:5346

    Article  CAS  Google Scholar 

  6. Basu N, Chakraborty A, Ghosh R (2018) Carbohydrate derived organogelators and the corresponding functional gels developed in recent time. Gels 4:52

    Article  Google Scholar 

  7. Yu Y, Wang S, Jia L, Zhou M, Pan Q, Zhai Y, Wang C (2016) Organogels from different self-assembling novel l-proline dihydrazide derivatives: gelation mechanism and morphology investigations. J Sol-Gel Sci Technol 78:218–227

    Article  CAS  Google Scholar 

  8. Peters GM, Davis JT (2016) Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chem Soc Rev 45:3188–3206

    Article  CAS  Google Scholar 

  9. Li T, Chen Y, Li C (2018) Androsterone-based gels enable diastereospecific reductions and diastereoselective epoxidations of gelators. Org Biomol Chem 16:6791–6800

    Article  CAS  Google Scholar 

  10. Baddi S, Sarma DS, Palanisamy A (2016) Self-assembly of aromatic biscarbamate gelators: effect of spacer length on the gelation and rheology. J Sol-Gel Sci Technol 79:637–649

    Article  CAS  Google Scholar 

  11. Mac Cormack AS, Busch VM, Japas ML, Giovanetti L, Di Salvo F, Di, Chenna PH (2020) The effect of vicinal di-halo substituents on the organogelling properties of aromatic supramolecular gelators and their application as soft templates. N J Chem 44:8198–8208

    Article  Google Scholar 

  12. Babu SS, Praveen VK, Ajayaghosh A (2014) Functional π-gelators and their applications. Chem Rev 114:1973–2129

    Article  CAS  Google Scholar 

  13. Malo de Molina P, Gradzielski M (2017) Gels obtained by colloidal self-assembly of amphiphilic molecules. Gels 3:30

    Article  Google Scholar 

  14. Guchhait S, Roy S (2019) Efficient peptide based gelators for aromatic organic solvents and vegetable oils: application in phase selective gelation and dye entrapment. J Sol-Gel Sci Technol 89:852–865

    Article  CAS  Google Scholar 

  15. Okesola BO, Vieira VMP, Cornwell DJ, Whitelaw NK, Smith DK (2015) 1,3:2,4-Dibenzylidene-d-sorbitol (DBS) and its derivatives—efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter 11:4768–4787

    Article  CAS  Google Scholar 

  16. Babu TM, Prasad E (2015) Charge-transfer-assisted supramolecular 1 D nanofibers through a cholesteric structure-directing agent: self-assembly design for supramolecular optoelectronic materials. Chem Eur J 21:11972–11975

    Article  CAS  Google Scholar 

  17. Li X, Fei J, Xu Y, Li D, Yuan T, Li G, Wang C, Li J (2018) A photoinduced reversible phase transition in a dipeptide supramolecular assembly. Angew Chem Int Ed 57:1903–1907

    Article  CAS  Google Scholar 

  18. Esposito CL, Kirilov P, Roullin VG (2018) Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. J Control Rel 271:1–20

    Article  CAS  Google Scholar 

  19. Felip-León C, Guzzetta F, Julián-López B, Galindo F, Miravet JF (2017) Multimodal light-harvesting soft hybrid materials: assisted energy transfer upon thermally reversible gelation. J Phys Chem C 121:21154–21159

    Article  Google Scholar 

  20. Mytnyk S, Olive AGL, Versluis F, Poolman JM, Mendes E, Eelkema R, van Esch JH (2017) Compartmentalizing supramolecular hydrogels using aqueous multi-phase systems. Angew Chem Int Ed 56:14923–14927

    Article  CAS  Google Scholar 

  21. Okesola BO, Smith DK (2016) Applying low-molecular weight supramolecular gelators in an environmental setting—self-assembled gels as smart materials for pollutant removal. Chem Soc Rev 45:4226–4251

    Article  CAS  Google Scholar 

  22. Tu T, Fang W, Sun Z (2013) Visual-size molecular recognition based on gels. Adv Mater 25:5304–5313

    Article  CAS  Google Scholar 

  23. Mandegani F, Zali‐Boeini H, Khayat Z, Braun JD, Herbert DE (2020) Low‐molecular‐weight gelators as dual‐responsive chemosensors for the naked‐eye detection of mercury(II) and copper(II) ions and molecular logic gates. ChemistrySelect 5:886–893

    Article  CAS  Google Scholar 

  24. Panja A, Ghosh K (2019) Cholesterol-based simple supramolecular gelators: an approach to selective sensing of CN ion with application in dye adsorption. Supramol Chem 31:239–250

    Article  CAS  Google Scholar 

  25. Piccinno M, Angulo-Pachón CA, Ballester P, Escuder B, Cort AD (2016) Rational design of a supramolecular gel based on a Zn(II)–salophen bis-dipeptide derivative. RSC Adv 6:57306–57309

    Article  CAS  Google Scholar 

  26. Sun Z, Huang Q, He T, Li Z, Zhang Y, Yi L (2014) Multistimuli-responsive supramolecular gels: design rationale, recent advances, and perspectives. ChemPhysChem 15:2421–2430

    Article  CAS  Google Scholar 

  27. Dastidar P (2019) Designing supramolecular gelators: challenges, frustrations, and hopes. Gels 5:15

    Article  CAS  Google Scholar 

  28. Dawn A, Shiraki T, Haraguchi S, Tamaru S, Shinkai S (2011) What kind of “Soft Materials” can we design from molecular gels? Chem Asian J 6:266–282

    Article  CAS  Google Scholar 

  29. Kuo S-Y, Liu C-Y, Balamurugan R, Zhang Y-S, Fitriyani S, Liu JH (2017) Dual-responsive ALS-type organogelators based on azobenzene–cholesteryl conjugates and their self-assemblies. N J Chem 41:15555–15563

    Article  CAS  Google Scholar 

  30. Bonifazi EL, Edelsztein VC, Menéndez GO, Samaniego López C, Spagnuolo CC, Di Chenna PH (2014) Versatile supramolecular organogel with outstanding stability toward aqueous interfaces. ACS Appl Mater Interfaces 6:8933–8936

    Article  CAS  Google Scholar 

  31. Hypercube, Inc. HyperChem (TM) Professional 8.0.7. Hypercube, Inc., Gainesville

  32. Reddy SMM, Shanmugam G, Duraipandy N, Kiran MS, Mandal AB (2015) An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages. Soft Matter 11:8126–8140

    Article  CAS  Google Scholar 

  33. Arakawa H, Takeda K, Higashi SL, Shibata A, Kitamura Y, Ikeda M (2020) Self-assembly and hydrogel formation ability of Fmoc-dipeptides comprising α-methyl-L-phenylalanine. Polym J 52:923–930

    Article  CAS  Google Scholar 

  34. Criado-Gonzalez M, Wagner D, Rodon Fores J, Blanck C, Schmutz M, Chaumont A, Rabineau M, Schlenoff JB, Fleith G, Combet J, Schaaf P, Jierry L, Boulmedais F (2020) Supramolecular hydrogel induced by electrostatic interactions between polycation and phosphorylated-Fmoc-tripeptide. Chem Mater 32:1946–1956

    Article  CAS  Google Scholar 

  35. Dawn A, Kumari H (2018) Low molecular weight supramolecular gels under shear: rheology as the tool for elucidating structure-function correlation. Chem Eur J 24:762–776

    Article  CAS  Google Scholar 

  36. Jamart-Grégoire B, Son S, Allix F, Felix V, Barth D, Jannot Y, Pickaert G, Degiovanni A (2016) Monolithic organic aerogels derived from single amino-acid based supramolecular gels: physical and thermal properties. RSC Adv 6:102198–102205

    Article  Google Scholar 

  37. Lazrag M, Steiner E, Lemaitre C, Mutelet F, Privat R, Rode S, Hannachi A, Barth D (2017) Experimental and thermodynamic comparison of the separation of CO2/toluene and CO2/tetralin mixtures in the process of organogel supercritical drying for aerogels production. J Sol-Gel Sci Technol 84:453–465

    Article  CAS  Google Scholar 

  38. Cicchi S, Ghini G, Lascialfari L, Brandi A, Betti F, Berti D, Baglioni P, Di Bari L, Pescitelli G, Mannini M, Caneschi A (2010) Self-sorting chiral organogels from a long chain carbamate of 1-benzyl-pyrrolidine-3,4-diol. Soft Matter 6:1655

    Article  CAS  Google Scholar 

  39. Pescitelli G, Di Bari L, Berova N (2014) Application of electronic circular dichroism in the study of supramolecular systems. Chem Soc Rev 43:5211–5233

    Article  CAS  Google Scholar 

  40. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. C R Chim 13:3–39

    Article  CAS  Google Scholar 

  41. Jung JH, Park M, Shinkai S (2010) Fabrication of silica nanotubes by using self-assembled gels and their applications in environmental and biological fields. Chem Soc Rev 39:4286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the institutions that supported this project: Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas.

Funding

This work was supported by Universidad de Buenos Aires, Argentina (grant 20020150100121BA) and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (grant PIP 11220110100778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo H. Di Chenna.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonifazi, E.L., Mac Cormack, A.S., Busch, V.M. et al. Chiral self-assembly and water effect on a supramolecular organogel stable towards aqueous interfaces. J Sol-Gel Sci Technol 102, 30–40 (2022). https://doi.org/10.1007/s10971-021-05550-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05550-w

Keywords

Navigation