Skip to main content
Log in

Structural and electrical properties of sol–gel grown (1 − x) (ZnO) + (x) (SnO2) (x = 0, 0.25, 0.5) nanocomposites

  • Original Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Semiconducting oxide nanocomposites of ZnO/SnO2 with different weight ratio, i.e. (i) ZnO:SnO2 = 100:0 (ZnO0), (ii) ZnO:SnO2 = 75:25 (ZnO25), and (iii) ZnO:SnO2 = 50:50 (ZnO50), were prepared by sol–gel method. X-ray diffraction (XRD) measurement reveals a rutile type tetragonal structure of SnO2 whereas hexagonal wurtzite structure of ZnO. Transmission electron microscopy (TEM) measurement suggests an effective role of SnO2 addition on the particle size of studied nanocomposites. Energy dispersive X-ray analysis (EDAX), carried out for elemental analysis for the studied nanocomposites, reveals the Sn deficiency in ZnO50 nanocomposite sample. Frequency dependent dielectric behavior recorded at different temperatures has been understood in the context of cole–cole plots for all the nanocomposites where variations in relaxation time and relaxation time distribution have been discussed in detail. Variation in ac conductivity has been discussed on the basis of Jonscher’s universal power law and crossover from correlated barrier hopping (CBH) mechanism to Maxwell–Wagner (M–W) relaxation has been identified for the studies nanocomposites. Overall electrical properties have been discussed in the context of oxygen vacancies, defects, disorder, and thermal energy in details.

Highlights

  • Cost effective synthesis of ZnO and SnO2 based nanocomposites.

  • Strong effect of addition of SnO2 on electrical properties nanocomposites.

  • Effective role of SnO2 nanoparticles in governing polarization mechanisms.

  • Efficient role of SnO2 nanoparticles in governing charge hopping mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tan QK, Cao W, Hu Y, Zhu W (2004) Ceram Int 30:1127

    Article  CAS  Google Scholar 

  2. Serban I, Enesca A (2020) Front Chem 8(354):1–8

    Google Scholar 

  3. Belgacem RB, Chaari M, Matoussi A (2015) J Alloy Compd 651:49

    Article  Google Scholar 

  4. Ayed S, Belgacem RB, Zayani JO, Matoussi A (2016) Superlattices Microstruct 91:118

    Article  CAS  Google Scholar 

  5. Lagariya M, Modi M, Dadhich H, Gal M, Gadani K, Solanki PS, Shah NA (2020) Phys B 577:411774

    Article  CAS  Google Scholar 

  6. Ashok CH, Rao KV (2014) Superlattices Microstruct 76:46

    Article  CAS  Google Scholar 

  7. Lachom V, Poolcharuansin P, Laokul P (2017) Preparation, Mater Res Exp 4:035006

    Article  Google Scholar 

  8. Gayathri S, Jayabal P, Ramakrishnan V (2015) AIP Confer Proc 1665:120025

    Article  Google Scholar 

  9. Wang LL, Ren ZQ, Li Q (2014) J Mater Sci: Mater Elec 25:2992

    CAS  Google Scholar 

  10. Singh J, Patil SS, More MA, Joag DS, Tiwari RS, Srivastava ON (2010) Appl Sur Sci 256:6157

    Article  CAS  Google Scholar 

  11. Xu J, Han J, Zhang Y, Sun Y, Xie B (2008) Sens Actuat B: Chem 132:334

    Article  CAS  Google Scholar 

  12. Huang XJ, Choi YK (2007) Sens Actuat B: Chem 122:659

    Article  CAS  Google Scholar 

  13. Tomar MS (1988) Thin Solid Films 164:295

    Article  Google Scholar 

  14. Lao CS, Gao PX, Yang RS, Zhang Y, Dai Y, Wang ZL (2006) Chem Phys Lett 417:358

    Article  CAS  Google Scholar 

  15. Khachar UD, Solanki PS, Kansara SB, Choudhary RJ, Phase DM, Kuberkar DG, Shah NA (2013) IEEE Trans Nano 12:915

    Article  CAS  Google Scholar 

  16. Solanki PS, Khachar UD, Vagadia M, Ravalia A, Katba S, Kuberkar DG (2015) J Appl Phys 117:145306

    Article  Google Scholar 

  17. Khachar UD, Solanki PS, Choudhary RJ, Phase DM, Kuberkar DG (2013) J Mater Sci Technol 29:989

    Article  CAS  Google Scholar 

  18. Rathod KN, Joshi Z, Dhruv D, Gadani K, Boricha H, Joshi AD, Solanki PS, Shah NA (2018) Mater Res Exp 5:035040

    Article  Google Scholar 

  19. Vagadia M, Ravalia A, Katba S, Solanki PS, Bapna K, Kumar M, Choudhary RJ, Phase DM, Kuberkar DG (2014) J Alloy Compd 610:113

    Article  CAS  Google Scholar 

  20. Morkoc H, Chyi JI, Chrost A, Nanishi Y, Silversmith DJ (2010) Proc IEEE 98:1113

    Article  Google Scholar 

  21. Yin D, Le Z, Liu B, Wu M (2012) J Nanosci Nanotechnol 12:2248

    Article  CAS  Google Scholar 

  22. Hoffman RL, Norris BJ, Wager JF (2003) Appl Phys Lett 82:733

    Article  CAS  Google Scholar 

  23. DB Bharti, AV Bharati, Luminescence, (2016) https://doi.org/10.1002/bio.3180

  24. Devi PG, Velu AS (2016) J Theor Appl Phys 10:233

    Article  Google Scholar 

  25. Lee SD, Nam SH, Kim MH, Boo JH (2012) Phys Procedia 32:320

    Article  CAS  Google Scholar 

  26. He C, Sasaki T, Shimizu Y, Koshizaki N (2008) Appl Sur Sci 254:2196

    Article  CAS  Google Scholar 

  27. Shimpi NG, Jain S, Karmakar N, Shah A, Kothari DC, Mishra S (2016) Appl Sur Sci 390:17

    Article  CAS  Google Scholar 

  28. Kumar S, Chauhan P, Kundu V (2016) J Mater Sci: Mater Electron 27:3103

    CAS  Google Scholar 

  29. Bargougui R, Oueslati A, Schmerber G, Ulhaq–Bouillet C, Colis S, Hlel F, Ammar S, Dinia A (2014) J Mater Sci: Mater Electron 25:2066

    CAS  Google Scholar 

  30. Messaadi C, Ghrib M, Chenaina H, Manso–Silvan M, Ezzaouia H (2018) J Mater Sci: Mater Electron 29:3095

    CAS  Google Scholar 

  31. Zhang J, Gao L (2003) Chem Lett 32:458

    Article  Google Scholar 

  32. Akhir MAM, Rezan SA, Mohamed K, Arafat MM, Haseeb ASMA, Lee HL (2019) Mater Today: Proc 17:810

    CAS  Google Scholar 

  33. Patil LA, Shinde MD, Bari AR, Deo VV (2009) Sens Actuat B: Chem 143:316

    Article  Google Scholar 

  34. Chitra M, Mangamma G, Uthayarani K, Neelakandeswari N, Girija EK (2020) Phys E 119:113969

    Article  CAS  Google Scholar 

  35. Upadhyay GK, Rajput JK, Pathak TK, Kumar V, Purohit LP (2019) Vacuum 160:154

    Article  CAS  Google Scholar 

  36. Li X, Wang CH, Xia N, Jiang M, Liu R, Huang J, Li Q, Luo Z, Liu L, Xu W, Fang D (2017) J Mol Struct 1148:347

    Article  CAS  Google Scholar 

  37. Prasannalakshmi P, Shanmugam N (2017) Mater Sci Semi Proc 61:114

    Article  CAS  Google Scholar 

  38. Sharmila PP, Sebastain RM, Sagar S, Mohammed EM, Tharayil NJ (2015) Ferroelectrics 474:144

    Article  CAS  Google Scholar 

  39. Kindalkar VS, Sandeep KM, Kumara K, Dharmaprakash SM (2019) Mater Res Exp 6:096435

    Article  CAS  Google Scholar 

  40. Kanabar N, Gadani K, Shrimali VG, Sagapariya K, Rathod KN, Udeshi B, Joseph J, Pandya DD, Solanki PS, Shah NA (2021) Appl Phys A 127:122

    Article  CAS  Google Scholar 

  41. Mondal B, Das J, Roychaudhuri C, Mukharjee N, Saha H (2019) Eur Phys J Appl Phys 73:10301

    Article  Google Scholar 

  42. Hamrouni A, Lachheb H, Houas A (2013) Mater Sci Eng B 178:1371

    Article  CAS  Google Scholar 

  43. Sudhaparimala S, Vaishnavi M (2016) Mater Today: Proc 3:2373

    Google Scholar 

  44. Hamrouni A, Moussa N, Parrino F, Paola AD, Houas A, Palmisano L (2014) J Mol Catal A Chem 390:133

    Article  CAS  Google Scholar 

  45. Singh G, Choudhary A, Haranath D, Joshi AG, Singh N, Singh S, Pasricha R (2012) Carbon 50:385

    Article  CAS  Google Scholar 

  46. Chou CS, Chou FC, Ding YG, Wu P (2012) Sol Energy 86:1435

    Article  CAS  Google Scholar 

  47. Carotta MC, Cervi A, Fioravanti A, Gherard S, Giberti A, Vendemiati B, Vincenzi D, Sacerdoti M (2011) Thin Solid Films 520:939

    Article  CAS  Google Scholar 

  48. Chen Z, Tian Y, Li S, Zheng H, Zhang W (2012) J Alloy Compd 515:57

    Article  CAS  Google Scholar 

  49. Mondal B, Basumatari B, Das J, Roychaudhury C, Saha H, Mukherjee N (2014) Sens Actuat B: Chem 194:389

    Article  CAS  Google Scholar 

  50. Mondal B, Basumatari B, Das J, Roychaudhury C, Mukherjee N, Saha H (2016) Eur Phys J Appl Phys 73:10301

    Article  Google Scholar 

  51. Marammal RN, Stella C, Kanmani SS, Umapathy S, Ramachandran K (2012) AIP Conf Proc 1447:391

    Article  Google Scholar 

  52. Lu Z, Zhou Q, Wang C, Wei Z, Xu L, Gui Y (2018) Front Chem 6:540

    Article  CAS  Google Scholar 

  53. Dabbabi S, Nasr TB, Ammar S, Kamoun N (2018) Superlattice Microst 123:129

    Article  CAS  Google Scholar 

  54. Gu F, Wang SF, Song CF, Lu MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2003) Chem Phys Lett 372:451

    Article  CAS  Google Scholar 

  55. Gadani K, Rathod KN, Shrimali VG, Rajyaguru B, Udeshi B, Vadgama VS, Dhruv D, Joshi AD, Pandya DD, Asokan K, Solanki PS, Shah NA (2020) Solid State Commun 318:113975

    Article  CAS  Google Scholar 

  56. Joshi Z, Dhruv D, Rathod KN, Markna JH, Satyaprasad A, Joshi AD, Solanki PS, Shah NA (2018) J Mater Sci Technol 34:488

    Article  Google Scholar 

  57. Ravaliya K, Ravalia A, Pandya DD, Solanki PS, Shah NA (2018) Thin Solid Films 645:436

    Article  CAS  Google Scholar 

  58. Zankat A, Boricha H, Shrimali VG, Gadani K, Sagapariya K, Rajyaguru B, Gal M, Pandya DD, Solanki PS, Shah NA (2019) J Alloy Compd 788:623

    Article  CAS  Google Scholar 

  59. Pandya R, Patel H, Shah NA, Solanki PS, Jani YN, Keshvani MJ (2020) Mater Today Commun 25:101458

    Article  CAS  Google Scholar 

  60. Thakrar K, Dhruv D, Rathod KN, Joshi Z, Gadani K, Pandya DD, Markna JH, Kataria BR, Solanki PS, Kuberkar DG, Shah NA (2016) J Sol–Gel Sci Technol 79:144

    Article  CAS  Google Scholar 

  61. Makawana P, Dhruv D, Solanki S, Boricha H, Satyaprasad A, Ranjan M, Solanki PS, Shah NA (2019) J Sol–Gel Sci Technol 89:866

    Article  Google Scholar 

  62. Sanghvi D, Boricha H, Hirpara B, Solanki S, Shrimali VG, Joshi AD, Solanki PS, Shah NA (2020) J Sol–Gel Sci Technol 93:666

    Article  CAS  Google Scholar 

  63. Elliott SR (1977) Philos Mag B 36:1291

    Article  CAS  Google Scholar 

  64. Elliott SR (1978) Philos Mag B 37:553

    Article  CAS  Google Scholar 

  65. Dadhich H, Rathod KN, Shrimali VG, Solanki S, Zankat A, Vadgama VS, Vaishnani A, Shah NA, Solanki PS (2019) Phys B 560:11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Pandya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zankat, A., Gadani, K., Rajyaguru, B. et al. Structural and electrical properties of sol–gel grown (1 − x) (ZnO) + (x) (SnO2) (x = 0, 0.25, 0.5) nanocomposites. J Sol-Gel Sci Technol 99, 198–210 (2021). https://doi.org/10.1007/s10971-021-05544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05544-8

Keywords

Navigation