Skip to main content
Log in

Synthesis and characterization of low-cost hierarchical porous silica by nanoemulsion templating: influence of nanoemulsion volume and hydrodynamic diameter

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica as a stable and biocompatible material has attracted a great deal of interest, particularly concerning the synthesis of porous silica. Hierarchical Porous Silica (HPS) can be synthesized through nanoemulsion templating and sol–gel. The oil droplets of NE acted as a pore-forming agent and the sol-gel built the matrix around the oil droplets. The O/W-NE was prepared by the phase inversion composition (PIC) method. The effect of nanoemulsion volume (2.5, 25, and 50) and the effect of oil droplet diameter (65, 105, 150, 200, and 400 nm) on the HPS was studied. Samples were characterized by many characterization techniques. The microstructure of the samples is versatile with macropores distributed homogenously through the mesoporous silica matrix or hollow macroporous spheres. Both volume and hydrodynamic diameter of the nanoemulsions influence the microstructure through the oil/water interfacial area. The surface area ranges between 158 and 281 m2/g and the pore volume is between 0.63 and 6.59 cc/g.

Highlights

  • Role of sodium silicate concentration/interfacial area is crucial.

  • Hierarchical porous silica with a macroporous matrix or hollow spheres.

  • Surface area ranges from 158 to 281 m2/g.

  • The pore volume ranges between 0.63 and 6.59 cc/g.

  • Surface roughness for pure silica is 2.48 and increases to 2.95 by nanoemulsion templating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fournier AC, Cumming H, McGrath KM (2010) Assembly of two- and three-dimensionally patterned silicate materials using responsive soft templates. Dalton Trans 39:6524–6531

    Article  CAS  Google Scholar 

  2. Schmidt M, S. F (1998) Applications for silica aerogel products. J Non-Crystalline Solids 225:5

    Article  Google Scholar 

  3. Perez-Quintanilla D, Sanchez A, Sierra I (2016) Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency. J Colloid Interface Sci 472:126–134

    Article  CAS  Google Scholar 

  4. Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y (2014) Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl Mater Interfaces 6:13648–13656

    Article  CAS  Google Scholar 

  5. Wang Y, Li B, Zhang L, Li P, Wang L, Zhang J (2012) Multifunctional magnetic mesoporous silica nanocomposites with improved sensing performance and effective removal ability toward Hg(II). Langmuir 28:1657–1662

    Article  CAS  Google Scholar 

  6. Vlasenkova MI, Dolinina ES, Parfenyuk EV (2019) Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release. Pharm Dev Technol 24:243–252

    Article  CAS  Google Scholar 

  7. Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M (2012) Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 24:517–524

    Article  CAS  Google Scholar 

  8. Sun B, Zhou G, Zhang H (2016) Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: a review. Prog Solid State Chem 44:1–19

    Article  Google Scholar 

  9. Zhang M, Li X, Zhang M, Xiu Z, Li J-G, Li J, Xie M, Chen J, Sun X (2019) High-strength macro-porous alumina ceramics with regularly arranged pores produced by gel-casting and sacrificial template methods. J Mater Sci 54:10119–10129

    Article  CAS  Google Scholar 

  10. Dong B, Yang M, Wang F, Hao L, Xu X, Wang G, Agathopoulos S (2019) Porous Al2O3 plates prepared by combing foaming and gel-tape casting methods for efficient collection of oil from water. Chem Eng J 370:658–665

    Article  CAS  Google Scholar 

  11. Dong B, Yang M, Wang F, Hao L, Xu X, Wang G, Agathopoulos S (2019) Novel fabrication processing of porous alumina/mullite membrane supports by combining direct foaming, sol-gel, and tape-casting methods. Mater Lett 240:140–143

    Article  CAS  Google Scholar 

  12. Kim IJ, Park JG, Han YH, Kim SY, Shackelford JF (2019) Wet foam stability from colloidal suspension to porous ceramics: a review. J Korean Ceram Soc 56:211–232

    Article  CAS  Google Scholar 

  13. Saptiama I, Kaneti YV, Yuliarto B, Kumada H, Tsuchiya K, Fujita Y, Malgras V, Fukumitsu N, Sakae T, Hatano K, Ariga K, Sugahara Y, Yamauchi Y (2019) Biomolecule-assisted synthesis of hierarchical multilayered boehmite and alumina nanosheets for enhanced molybdenum adsorption. Chemistry. https://doi.org/10.1002/chem.201900177

  14. Sandoval ML, Ramajo L, Camerucci MA (2019) Cellular mullite materials processed by direct foaming and protein casting. J Eur Ceram Soc 39:2472–2483

    Article  CAS  Google Scholar 

  15. Nan J, Huang C-e, Tian L, Shen C (2019) Effects of micro-emulsion method on microwave dielectric properties of 0.9Al2O3-0.1TiO2 ceramics. Mater Lett 249:132–135

    Article  CAS  Google Scholar 

  16. Wang W, Ren X, Yang W, Zhang C, Ru H (2019) Hierarchical mesoporous silica microspheres prepared by partitioned cooperative self-assembly process using sodium silicate as precursor and their drug release performance. Microporous Mesoporous Mater 275:50–60

    Article  CAS  Google Scholar 

  17. Tétreault N, Míguez H, Ozin GA (2004) Silicon Inverse Opal—A Platform for Photonic Bandgap Research. Adv Mater 16:1471–1476

  18. Shimizu W, Hokka J, Sato T, Usami H, Murakami Y (2011) Microstructure investigation on micropore formation in microporous silica materials prepared via a catalytic sol-gel process by small angle X-ray scattering. J Phys Chem B 115:9369–9378

    Article  CAS  Google Scholar 

  19. Kresge MELCT, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:3

    Article  Google Scholar 

  20. Pallavidino L, Liscidini M, Virga A, Chiodoni A, Descrovi E, Cos J, Andreani LC, Pirri CF, Geobaldo F, Giorgis F (2011) Synthesis of amorphous silicon/magnesia based direct opals with tunable optical properties. Opt Mater 33:563–569

    Article  CAS  Google Scholar 

  21. Li Y, Piret F, Leonard T, Su BL (2010) Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range. J Colloid Interface Sci 348:43–48

    Article  CAS  Google Scholar 

  22. Waterhouse GIN, Waterland MR (2007) Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 26:356–368

    Article  CAS  Google Scholar 

  23. Hessien M, Leone P, Suchaud M, LeBeau B, Nouali H, Guari Y, Prouzet E (2012) Nanocrystalline iron oxide synthesised within Hierarchical Porous Silica prepared by nanoemulsion templating. Chem Commun (Camb, U K) 48:10022–10024

    Article  CAS  Google Scholar 

  24. Spernath L, Magdassi S (2010) Formation of silica nanocapsules from nanoemulsions obtained by the phase inversion temperature method. Micro Nano Lett 5:28–36

  25. Spernath L, Magdassi S (2007) A new method for preparation of poly-lauryl acrylate nanoparticles from nanoemulsions obtained by the phase inversion temperature process. Polym Adv Technol 18:705–711

    Article  CAS  Google Scholar 

  26. Zoldesi CI, Steegstra P, Imhof A (2007) Encapsulation of emulsion droplets by organo-silica shells. J Colloid Interface Sci 308:121–129

    Article  CAS  Google Scholar 

  27. Zoldesi CWC, Imhof A (2006) Deformable hollow hybrid silica/siloxane colloids by emulsion templating. Langmuir 22:4343–4352

    Article  CAS  Google Scholar 

  28. Zoldesi CI, Imhof A (2005) Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv Mater 17:924–928

    Article  CAS  Google Scholar 

  29. Manoharan AIV, Thorne J, Pine D (2001) Photonic crystals from emulsion templates. Adv Mater 13:447–450

    Article  CAS  Google Scholar 

  30. Imhof A, Pine D (1998) Uniform macroporous ceramics and plastics by emulsion templating. Adv Mater 10:697–700

    Article  CAS  Google Scholar 

  31. Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion templating. Nature 389:948–951

    Article  CAS  Google Scholar 

  32. Phadke S, Ho J, Birnie DP (2009) Emulsion templating to obtain dual-size-scale mesoporous titania coatings. Mater Lett 63:2619–2621

    Article  CAS  Google Scholar 

  33. Sole I, Pey CM, Maestro A, Gonzalez C, Porras M, Solans C, Gutierrez JM (2010) Nano-emulsions prepared by the phase inversion composition method: preparation variables and scale up. J Colloid Interface Sci 344:417–423

    Article  CAS  Google Scholar 

  34. Hessien M, Singh N, Kim C, Prouzet E (2011) Stability and tunability of O/W nanoemulsions prepared by phase inversion composition. Langmuir 27:9

    Article  Google Scholar 

  35. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12:2826–2841

    Article  CAS  Google Scholar 

  36. Liu W, Sun D, Li C, Liu Q, Xu J (2006) Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. J Colloid Interface Sci 303:557–563

    Article  CAS  Google Scholar 

  37. Baptista M, Kovalevsky AV, Sarabando AR, Ferro MC, Capela I, Frade JR (2019) Highly-porous mayenite-based ceramics by combined suspension emulsification and reactive sintering. Mater Lett 237:41–44

    Article  CAS  Google Scholar 

  38. Riachy P, Stébé M-J, Lebeau B, Pasc A, Vidal L, Blin J-L (2016) Nano-emulsions as imprints for the design of hierarchical porous silica through a dual templating mechanism. Microporous Mesoporous Mater 221:228–237

    Article  CAS  Google Scholar 

  39. Schacht S, Huo Q, Voigt-Martin I, Stucky GD, Schüth F (1996) Oil-water interface templating of mesoporous macroscale structures. Science 273:768–771

    Article  CAS  Google Scholar 

  40. Zoldesi AIC (2005) Synthesis of monodisperse colloidal spheres, capsules, and microballons by emulsion templating. Adv Mater 17:924–928

    Article  CAS  Google Scholar 

  41. Imhof DPA (1998) Uniform macroporous ceramics and plastics by emulsion templating. Adv Mater 10:697–700

    Article  CAS  Google Scholar 

  42. Destribats M, Faure B, Birot M, Babot O, Schmitt V, Backov R (2012) Tailored silica macrocellular foams: combining limited coalescence-based pickering emulsion and sol-gel process. Adv Funct Mater 22:2642–2654

    Article  CAS  Google Scholar 

  43. Destribats M, Schmitt V, Backov R (2010) Thermostimulable wax@SiO2 core-shell particles. Langmuir 26:1734–1742

    Article  CAS  Google Scholar 

  44. Carn F, Colin A, Achard M-F, Deleuze H, Sellier E, Birot M, Backov R (2004) Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. J Mater Chem 14:1370–1376

    Article  CAS  Google Scholar 

  45. Pine AIDJ (1997) Ordered macroporous materials by emulsion templating. Nature 389:948–951

    Article  Google Scholar 

  46. Patrick S-W, Glinka CJ, Stucky GD (2000) Microemulsion templates for mesoporous silica. Langmuir 16:6

    Google Scholar 

  47. Schmidt-Winkel P, Lukens WWJ, Yang P, Margolese DI, Lettow JS, Ying JY, Stucky GD (2000) Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chem Mater 12:686–696

    Article  CAS  Google Scholar 

  48. Hessien M, Prouzet E (2021) Synthesis of hierarchical porous silica by sol-gel of sodium silicate and nanoemulsion templating: effective combination conditions, ChemistrySelect 6:1440–1447

  49. Shang YYP, Wang W, Wang Y, Niu N, Gai S, Lin J (2011) Sol–gel preparation and characterization of uniform core-shell structured LaInO3:Sm3+/Tb3+@SiO2 phosphors. J Alloy Compd 509:837–844

    Article  CAS  Google Scholar 

  50. Zhang Z, Liu J, Gao W, Sun L, Li Z (2020) Action of silicic acid derived from sodium silicate precursor toward improving performances of porous gelatin membrane. J Appl Polym Sci 137:48912

  51. Khedkar MV, Jadhav SA, Somvanshi SB, Kharat PB, Jadhav KM (2020) Physicochemical properties of ambient pressure dried surface modified silica aerogels: effect of pH variation. SN Appl Sci 2:696

  52. Lytle JC, Stein AA (2006) Recent progress in syntheses and applications of inverse opals and related macroporous materials prepared by colloidal crystal templating. In: Cao G, Brinker CJ (eds) Annual reviews of nano research. Ch 1, Vol 1. World Scientific Publishing Co., pp 1–79

  53. Phattharachindanuwong C, Hansupalak N, Jantawatchai K, Warakulwit C, Plank J, Chisti Y (2016) Production and characterization of hierarchical porous silica made using natural rubber as template: Effects of the template removal methods, the pH of production, and the natural rubber sources. Chem Eng Res Des 113:273–283

    Article  CAS  Google Scholar 

  54. Neirinck B, Kerckhofs G, Wevers M, Van der Biest O, Vleugels J (2010) Morphological analysis of slip-cast emulsion-templated alumina foams by microfocus computer tomography. J Am Ceram Soc 93:3921–3928

    Article  CAS  Google Scholar 

  55. Pentyala P, Shahid M, Ramamirtham S, Basavaraj MG (2018) Porous materials from oppositely charged nanoparticle gel emulsions. Colloids Surf A: Physicochemical Eng Asp 544:172–178

    Article  CAS  Google Scholar 

  56. Li X, Liu X, Yan X, Zhang Z, Han D, Han L, Yan Z (2012) A facile one step synthesis of alumina monolith with bimodal pore structure from emulsion template. Mater Lett 68:234–236

    Article  CAS  Google Scholar 

  57. Depardieu M, Nollet M, Schmitt V, Backov R (2016) Integrative chemistry: positioning chemical reactors within the geometric space as a tool for the design of advanced functional materials. Comptes Rendus Chim 19:216–230

    Article  CAS  Google Scholar 

  58. Li W, Yue Q, Deng Y, Zhao D (2013) Ordered mesoporous materials based on interfacial assembly and engineering. Adv Mater 25:5129–5152. 5128

    Article  CAS  Google Scholar 

  59. Cervantes-Martinez CV, Stébé M-J, Emo M, Lebeau B, Blin J-L (2020) Hierarchical mesoporous silica templated by the combination of fine emulsion and micelles, Microporous Mesoporous Mater 305:110376

  60. Zou X, Wang P, Chen S, Wang Z, Fan G, Liao S, Si H (2019) Morphology control of ordered supermicroporous silicas. Ceram Int 45:16803–16808

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal Hessien.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Example for calculation of determining interface area between oil and water

Appendix 1: Example for calculation of determining interface area between oil and water

Taking the O-1-NE sample as an example, it contains 10 g of paraffin oil, with density of 0.86 g/cm3, which results in volume of 11.63 cm3 = 11.63 × 1021 nm3. Diameter of oil droplet of this nanoemulsion equals to 400 nm and radius of 200 nm. Volume of one oil droplet is 33.5 × 106 nm3. Number of oil droplets equals to the total oil volume divided by the volume of one oil droplet. The number of oil droplets is 3.47 × 1014. The surface area of one droplet is about 5 × 105 nm2 and the total surface area of all oil droplets which is the total interface area between oil and water is equal to surface area of one droplet multiply by total number of droplets = 174 m2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hessien, M., Prouzet, E. Synthesis and characterization of low-cost hierarchical porous silica by nanoemulsion templating: influence of nanoemulsion volume and hydrodynamic diameter. J Sol-Gel Sci Technol 99, 63–74 (2021). https://doi.org/10.1007/s10971-021-05543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05543-9

Keywords

Navigation