Skip to main content
Log in

Multifunctional magnetic mesoporous nanocomposites towards multiple applications in dye and oil adsorption

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Multifunctional magnetic mesoporous nanocomposites are promising materials to remove the various pollutants from water due to the remarkable properties such as multiple binding sites, high surface area, and magnetic separation. Herein, we have developed a versatile nanocomposite, in which polydopamine (PDA) coated Fe3O4 nanoparticles are introduced during the synthesis of SBA-15 matrix for the first time to enhance adsorptive properties of hydrophilic magnetic mesoporous nanocomposite by combining the properties of high surface area, magnetization, and capability of interacting with more functional groups in one material. The resulting nanocomposite, Fe3O4@PDA@SBA-15, has been proved to be the effective sorbent for the removal of cationic dye, which can be ascribed to the functional groups of grafted PDA and the textural features of matrix SBA-15. On the other hand, after chemical modification via silanization of vinyltriethoxysilane (VTES), Fe3O4@PDA@SBA-15 nanocomposite turned to be a hydrophobic material, Fe3O4@PDA@SBA-15@VTES, which can adsorb oil with high adsorption capacity which could reach 8.83 times of its own weight. Moreover, both nanocomposites could be recycled by facile washing and drying processes. The materials provide a simple strategy for the preparation of multifunctional magnetic mesoporous nanocomposites satisfying various applications in water treatment.

Highlights

  • The Fe3O4@PDA@SBA-15 hydrophilic nanocomposite was developed to enhance the adsorption of cationic dye.

  • Nanocomposite turns to be a hydrophobic material (Fe3O4@PDA@SBA-15@VTES) that can adsorb oil.

  • These materials with tunable properties satisfy various applications in water treatment.

  • We offer a simple strategy to fabric multifunctional nanocomposites for dye and oil removal.

  • Both nanocomposites are easily separated and regenerated owing to magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115

    Article  CAS  Google Scholar 

  2. Abdullah MA, Rahmah AU, Man Z (2010) Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J Hazard Mater 177:683–691

    Article  CAS  Google Scholar 

  3. Kujawinski EB, Soule MCK, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the deep water horizon oil spill. Environ Sci Technol 45:1298–1306

    Article  CAS  Google Scholar 

  4. Buist I, Potter S, Nedwed T, Mullin J (2011) Herding surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Reg Sci Technol 67:3–23

    Article  Google Scholar 

  5. Broje V, Keller AA (2006) Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ Sci Technol 40:7914–7918

    Article  CAS  Google Scholar 

  6. Zahed MA, Aziz HA, Isa MH, Mohajeri L, Mohajeri S (2010) Optimal conditions for bioremediation of oily seawater. Bioresour Technol 101:9455–9460

    Article  CAS  Google Scholar 

  7. Yu L, Hao G, Liang Q, Jiang W (2015) Fabrication of magnetic porous silica submicroparticles for oil removal from water. Ind Eng Chem Res 54:9440–9449

    Article  CAS  Google Scholar 

  8. Pan X, Zuo G, Su T, Cheng S, Gu Y, Qi X, Dong W (2019) Polycarboxylic magnetic polydopamine sub-microspheres for effective adsorption of malachite green. Colloids Surf A 560:106–113

    Article  CAS  Google Scholar 

  9. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443

    Article  CAS  Google Scholar 

  10. Zhai Q (2020) Study on SBA-15 as an effective sorbent for dye butyl rhodamine B. J Sol Gel Sci Technol 96:34–46

    Article  CAS  Google Scholar 

  11. Wang K, Fu J, Wang S, Gao M, Zhu J, Wang Z, Xu Q (2018) Polydopamine-coated magnetic nanochains as efficient dye adsorbent with good recyclability and magnetic separability. J Colloid Interface Sci 516:263–273

    Article  CAS  Google Scholar 

  12. Gao J, Hou L, Zhang G, Gu P (2015) Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution. J Hazard Mater 286:325–333

    Article  CAS  Google Scholar 

  13. Lu A, Li W, Kiefer A, Schmidt W, Bill E, Fink G, Schüth F (2004) Fabrication of magnetically separable mesostructured silica with an open pore system. J Am Chem Soc 126:8616–8617

    Article  CAS  Google Scholar 

  14. Du Y, Liu S, Ji Y, Zhang Y, Xiao N, Xiao F (2008) Ordered mesoporous silica materials (SBA-15) with good heat-resistant magnetism. J Magn Magn Mater 320:1932–1936

    Article  CAS  Google Scholar 

  15. Wang X, Chen M, Li L, Jin D, Jin H, Ge H (2010) Magnetic properties of SBA-15 mesoporous nanocomposites with CoFe2O4 nanoparticles. Matter Lett 64:708–710

    Article  CAS  Google Scholar 

  16. Bai L, Duan S, Jiang W, Liu M, Wang S, Sang M, Gong X, Li J, Xuan S (2017) High performance polydopamine-functionalized mesoporous silica nanospheres for U(VI) removal. Appl Surf Sci 426:1121–1132

    Article  CAS  Google Scholar 

  17. Nicola R, Costişor O, Muntean S, Nistor M, Putz A, Ianăşi C, Lazău R, Almásy L, Săcărescu L (2020) Mesoporous magnetic nanocomposites: a promising adsorbent for the removal of dyes from aqueous solutions. J Porous Mater 27:413–428

    Article  CAS  Google Scholar 

  18. Lee KR, Kim S, Kang DH, Lee JI, Lee YJ, Kim WS, Cho D, Lim HB, Kim J, Hur NH (2008) Highly uniform superparamagnetic mesoporous spheres with submicrometer scale and their uptake into cells. Chem Mater 20:6738–6742

    Article  CAS  Google Scholar 

  19. Zhang J, Liu M, Liu Z, Yang T, He Q, Yang K, Wang H (2017) Studies of malachite green adsorption on covalently functionalized Fe3O4@SiO2-graphene oxides core-shell magnetic micrsospheres. J Sol-Gel Sci Technol 82:424–431

    Article  CAS  Google Scholar 

  20. Rajabi M, Mahanpoor K, Moradi O (2019) Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: kinetic and thermodynamic studies. Compos Part B-Eng 167:544–555

    Article  CAS  Google Scholar 

  21. Zhang S, Zhang Y, Bi G, Liu J, Wang Z, Xu Q, Xu H, Li X (2014) Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal. J Hazard Mater 270:27–34

    Article  CAS  Google Scholar 

  22. Liu S, Fu J, Wang M, Yan Y, Xin Q, Cai L, Xu Q (2016) Magnetically separable and recyclable Fe3O4–polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts. J Colloid Interface Sci 469:69–77

    Article  CAS  Google Scholar 

  23. Lai G, Zheng M, Hu W, Yu A (2017) One-pot loading high-content thionine on polydopamine-functionalized mesoporous silica nanosphere for ultrasensitive electrochemical immunoassay. Biosens Bioelectron 95:15–20

    Article  CAS  Google Scholar 

  24. Garcia C, Zhang Y, DiSalvo F, Wiesner U (2003) Mesoporous aluminosilicate materials with superparamagnetic γ-Fe2O3 particles embedded in the walls. Angew Chem Int Ed 42:1526–1530

    Article  CAS  Google Scholar 

  25. Ain QU, Rasheed U, Yaseen M, Zhang H, Tong Z (2020) Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite. J Hazard Mater 397:122758

    Article  CAS  Google Scholar 

  26. Zhou Z, Zheng B, Gu Y, Shen C, Wen J, Meng Z, Chen S, Ou J, Qin A (2020) New approach for improving anticorrosion and biocompatibility of magnesium alloys via polydopamine intermediate layer-induced hydroxyapatite coating. Surf Interfaces 19:100501

    Article  CAS  Google Scholar 

  27. Yu F, Chen S, Chen Y, Li H, Yang L, Chen Y, Yin Y (2010) Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 stainless steel. J Mol Struct 982:152–161

    Article  CAS  Google Scholar 

  28. Fu J, Xin Q, Wu X, Chen Z, Yan Y, Liu S, Wang M, Xu Q (2016) Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. J Colloid Interface Sci 461:292–304

    Article  CAS  Google Scholar 

  29. Eltaweil AS, Mohamed HA, El-Monaem EMA, El-Subruiti GM (2020) Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms. Adv Powder Technol 31:1253–1263

    Article  CAS  Google Scholar 

  30. Wu CH (2006) Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater 144:93–100

    Article  Google Scholar 

  31. Sibeko MA, Luyt AS (2014) Preparation and characterisation of vinylsilane crosslinked low-density polyethylene composites filled with nano clays. Polym Bull 71:637–657

    Article  CAS  Google Scholar 

  32. Dai H, Peng X, Yang W, Hu F, Qiu Z, Zou Y (2018) Synthesis and characterization of graphitic magnetic mesoporous nanocomposite and its application in dye adsorption. J Mol Liq 253:197–204

    Article  CAS  Google Scholar 

  33. Zhao T, Jiang L (2018) Contact angle measurements of natural materials. Colloids Surf B 161:324–330

    Article  CAS  Google Scholar 

  34. Giljean S, Bigerelle M, Anselme K, Haidara H (2011) New insight on contact angle/roughness dependence on high surface energy materials. Appl Surf Sci 257:9631–9638

    Article  CAS  Google Scholar 

  35. Gu H, Wang C, Gong S, Mei Y, Li H, Ma W (2016) Investigation on contact angle measurements methods and wettability transition of porous surfaces. Surf Coat Technol 292:72–77

    Article  CAS  Google Scholar 

  36. Guo C, Wang S, Liu H, Feng L, Song Y, Jiang L (2008) Wettability alteration of polymer surfaces produced by scraping. J Adhes Sci Technol 22:395–402

    Article  CAS  Google Scholar 

  37. Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74:69–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Commission of Scientific Research Projects of Bursa Uludag University, Project number: OUAP(F)-2015/21.

Funding

This work was supported by The Commission of Scientific Research Projects of Bursa Uludag University, Project number: OUAP(F)-2015/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beyhan Erdem.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, B., İşcan, K.B. Multifunctional magnetic mesoporous nanocomposites towards multiple applications in dye and oil adsorption. J Sol-Gel Sci Technol 98, 528–540 (2021). https://doi.org/10.1007/s10971-021-05528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05528-8

Keywords

Navigation