Skip to main content

Effect of C/SiC interphase on interfacial and mechanical properties of SiC fiber reinforced mullite matrix composites

Abstract

Continuous SiC fiber reinforced mullite (SiCf/Mu) matrix composite was fabricated via sol–gel process. The capability of fiber coatings to weaken the interfacial interaction, thus to enhance the fracture toughness of the SiCf/Mu composite was explored. The results show that the SiC interphase fabricated by chemical vapor deposition (CVD) process was columnar-grain structured. A thin carbon layer was also produced during the CVD process, forming C/SiC interphase. The interfacial shear strength of the SiCf/Mu composite was significantly reduced from ≈537 to ≈115 MPa after the introduction of C/SiC interphase, as quantified by in situ fiber push-in tests. Accordingly, the macro fracture toughness of the composite was remarkably enhanced from ≈0.9 to ≈10.5 MPa m1/2. The work highlights the efficiency of using C/SiC interphase to weaken the interfacial bonding, thus greatly toughen the SiCf/Mu composite.

Highlights

  • The interfacial bonding between fiber and matrix in the SiCf/mullite composite is very strong.

  • The introduction of the C/SiC interphase could reduce the interfacial shear strength.

  • The flexural strength and fracture toughness of the SiCf/SiC/mullite composite are higher than those of SiCf/mullite composite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Udayakumar A, Ganesh AS, Raja S, Balasubramanian M (2011) Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI. J Eur Ceram Soc 31:1145–1153

    CAS  Article  Google Scholar 

  2. Shimoda K, Park JS, Hinoki T, Kohyama A (2008) Influence of pyrolytic carbon interface thickness on microstructure and mechanical properties of SiC/SiC composites by NITE process. Compos Sci Technol 68:98–105

    CAS  Article  Google Scholar 

  3. Liu HT, Cheng HF, Wang J, Tang GP (2010) Effects of the single layer CVD SiC interphases on the mechanical properties of the SiCf/SiC composites fabricated by PIP process. Ceram Int 36:2033–2037

    CAS  Article  Google Scholar 

  4. Xiang Y, Li W, Wang S, Chen ZH (2012) Effects of the single layer CVD SiC interphases on the mechanical properties of the C/SiC composites fabricated by PIP process. Mater Sci Eng A 558:451–455

    CAS  Article  Google Scholar 

  5. Ding DH, Zhou WC, Luo F, Chen ML, Zhu DM (2012) Mechanical properties and oxidation resistance of SiCf/CVI-SiC composites with PIP-SiC interphase. Ceram Int 38:3929–3934

    CAS  Article  Google Scholar 

  6. Ding DH, Zhou WC, Luo F, Mu Y, Zhu DM (2012) The effects of CVD SiC interphase on mechanical properties of KD-1 SiC fiber reinforced aluminum phosphate composites. Mater Sci Eng A 534:347–352

    CAS  Article  Google Scholar 

  7. Chen SA, Zhang YD, Zhang CR, Zhao D, Hu HF, Zhang ZB (2013) Effects of SiC interphase by chemical vapor deposition on the properties of C/ZrC composite prepared via precursor infiltration and pyrolysis route. Mater Des 46:497–502

    CAS  Article  Google Scholar 

  8. Wang FY, Cheng LF, Xiang LY, Zhang Q, Zhang LT (2014) Effect of SiC coating and heat treatment on the thermal radiation properties of C/SiC composites. J Eur Ceram Soc 34:1667–1672

    CAS  Article  Google Scholar 

  9. Wang Y, Cheng HF, Wang J (2014) Effects of the single layer CVD SiC interphases on mechanical properties of mullite fiber-reinforced mullite matrix composites fabricated via a sol-gel process. Ceram Int 40:4707–4715

    CAS  Article  Google Scholar 

  10. Kotani M, Konaka K, Ogihara S (2016) The effect on the tensile properties of PIP-processed SiC/SiC composite of a chemical vapor-infiltrated SiC layer overlaid on the pyrocarbon interface layer. Compos Part A 87:123–130

    CAS  Article  Google Scholar 

  11. Zhang MY, Li KZ, Shi XH, Tan WL (2017) Effects of SiC interphase on the mechanical and ablation properties of C/C-ZrC-ZrB2-SiC composites prepared by precursor infiltration and pyrolysis. Mater Des 122:322–329

    CAS  Article  Google Scholar 

  12. Xiang Y, Li W, Wang S, Chen ZH (2012) Oxidation behavior of oxidation protective coatings for PIP-C/SiC composites at 1500 °C. Ceram Int 38:9–13

    CAS  Article  Google Scholar 

  13. Liu HT, Yang LW, Han S, Cheng HF, Mao WG, Molina-Aldareguía JM (2017) Interface controlled micro- and macro- mechanical properties of aluminosilicate fiber reinforced SiC matrix composites. J Eur Ceram Soc 37:883–890

    CAS  Article  Google Scholar 

  14. Han S, Yang LW, Liu HT, Sun X, Jiang R, Mao WG, Chen ZH (2017) Micro-mechanical properties and interfacial engineering of SiC fiber reinforced sol-gel fabricated mullite matrix composites. Mater Des 131:265–272

    CAS  Article  Google Scholar 

  15. Molina-Aldareguía JM, Rodriguez M, González C, Llorca J (2011) An experimental and numerical study of the influence of local effects on the application of the fibre push-in test. Philos Mag 91:1293–1307

    Article  Google Scholar 

  16. Rodriguez M, Molina-Aldareguía JM, González C, Llorca J (2012) A methodology tomeasure the interface shear strength by means of the fiber push-in test. Compos Sci Technol 72:1924–1932

    CAS  Article  Google Scholar 

  17. Zhang L, Ren C, Zhou C, Xu H, Jin X (2015) Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique. Appl Surf Sci 357:1427–1433

    CAS  Article  Google Scholar 

  18. Jiang R, Yang LW, Liu HT, Tan W, Sun X, Cheng HF, Mao WG (2018) A multiscale methodology quantifying the sintering temperature dependent mechanical properties of oxide matrix composites. J Am Ceram Soc 101:3168–3180

    CAS  Article  Google Scholar 

  19. Yang LW, Liu HT, Jiang R, Sun X, Mao WG, Cheng HF, Molina-Aldareguía JM (2017) Weak interface dominated high temperature fracture strength of carbon fiber reinforced mullite matrix composites. J Eur Ceram Soc 37:2991–2996

    CAS  Article  Google Scholar 

  20. Boccaccini AR, MacLaren I, Lewis MH, Ponton CB (1997) Electrophoretic deposition infiltration of 2-D woven SiC fibre mats with mixed sols of mullite composition. J Eur Ceram Soc 17:1545–1550

    CAS  Article  Google Scholar 

  21. Hirata Y, Matsura T, Hayata K (2000) Infiltration and pyrolysis of polytitanocarbosilane in an Si-Ti-C-O fabric/mullite porous composite. J Am Ceram Soc 83:1044–1048

    CAS  Article  Google Scholar 

  22. Gao H, Luo F, Deng HW, Nan HY, Qing YC (2019) Fabrication of SiCf/SiC-mullite composite with improved pretreatment condition via precursor infiltration-sintering combined with infiltration. Ceram Int 45:16062–16069

    CAS  Article  Google Scholar 

  23. Yang LW, Liu HT, Cheng HF (2017) Processing-temperature dependent micro- and macro-mechanical properties of SiC fiber reinforced SiC matrix composites. Compos Part B 129:152–161

    CAS  Article  Google Scholar 

Download references

Acknowledgements

HL greatly appreciates the financial support from Natural Science Foundation for Distinguished Young Scholars of Hunan Province (Grant Number: 2020JJ2032) and 1912 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru Jiang or Haitao Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, G., Sun, X., Tian, Z. et al. Effect of C/SiC interphase on interfacial and mechanical properties of SiC fiber reinforced mullite matrix composites. J Sol-Gel Sci Technol 98, 335–341 (2021). https://doi.org/10.1007/s10971-021-05516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05516-y

Keywords

  • SiCf/Mu composites
  • Interface
  • Fracture toughness
  • Mechanical properties