Skip to main content
Log in

Performance of Pt–MoS2 co-modified 3-dimensional TiO2 nanoflowers in photocatalytic water splitting reaction

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

3-dimensional TiO2 nanoflowers (TiO2-NF) constituted by TiO2 nanosheets were synthesized successfully via a facile hydrothermal method in this work. To enhance the photocatalytic activity of the prepared nanoflowers, MoS2 and Pt were used as modifiers. The experimental results indicated that the MoS2/TiO2-NF had better photocatalytic performance than the original TiO2-NF, and MoS2/TiO2-NF containing 2.0% MoS2 exhibited the best photocatalytic activity for water splitting reaction. Under the irradiation of simulated sunlight, the H2 evolution rates over MoS2/TiO2-NF (2.0%) and TiO2-NF were 1700 and 630 μmol g−1 h−1, respectively. Furthermore, the photocatalytic activity of MoS2/TiO2-NF (2.0%) was enhanced by Pt modification, and the H2 evolution rate over Pt–MoS2/TiO2-NF (2.0%) rose to 7500 μmol g−1 h−1. The Pt–MoS2/TiO2-NF (2.0%) was recyclable, and retained its original photocatalytic activity after five cycles.

Highlights

  • MoS2/TiO2 catalysts with 3D nanoflower (NF) structure were synthesized successfully. MoS2/TiO2-NF containing 2.0% MoS2 exhibited high hydrogenproductionrates under the irradiation of visible light (1566 μmol g−1 h−1) and simulated sunlight (1700 μmol g−1 h−1).

  • Pt nanoparticles were loaded on MoS2/TiO2-NF catalysts as electron receptors to improve the catalysts’ photocatalytic performance.

  • Due to the cooperativity of Pt NPs and MoS2, the hydrogen-production rates of Pt–MoS2/TiO2-NF (2.0%) were 7500 μmol g−1 h−1 (under the illumination of simulated sunlight) and 6400 μmol g−1 h−1 (under the visible light).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated during the study are available from the corresponding author by request.

References

  1. Ben-Zvi O, Dafni E, Feldman Y, Yacoby I (2019) Re‑routing photosynthetic energy for continuous hydrogen production in vivo. Biotechnol Biofuels 12:266–278

    Article  Google Scholar 

  2. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  3. Yan J, Huang Y, Zhang L, Zhou M, Yang P, Chen W, Deng X, Yang H (2020) Preparation of MoS2-Graphene-NiO@Ni foam composite by sol coating for (photo)electrocatalytic hydrogen evolution reaction. J Sol-gel Sci Technol 93:462–470

  4. Zhang X, Luo L, Yun R, Pu M, Zhang B, Xiang X (2019) Increasing the activity and selectivity of TiO2‑supported Au catalysts for renewable hydrogen generation from ethanol photoreforming by engineering Ti3+ defects. ACS Sustain Chem Eng 7:13856–13864

    Article  CAS  Google Scholar 

  5. Wen C, Zhang Z, Guo Z, Shen J, Sa B, Lin P, Zhou J, Sun Z (2020) Two-dimensional O-phase group III monochalcogenides for photocatalytic water splitting. J Phys Condens Matter 32:No. 065501

    Article  Google Scholar 

  6. Qin Z, Huang Z, Wang M, Liu D, Chen Y, Guo L (2020) Synergistic effect of quantum confinement and site-selective doping in polymeric carbon nitride towards overall water splitting. Appl Catal B 261:No.118211

    Article  Google Scholar 

  7. Zhang Q, Chen W, Chen G, Huang J, Song C, Chu S, Zhang R, Wang G, Li C, Ostrikov KK (2020) Bi-metallic nitroxide nanodot-decorated tri-metallic sulphide nanosheets by on-electrode plasma-hydrothermal sprouting for overall water splitting. Appl Catal B 261:No.118254

    Article  Google Scholar 

  8. Nandanapalli KR, Mudusu D, Yu J, Lee S (2020) Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications. J Colloid Inter Sci 558:9–20

    Article  Google Scholar 

  9. Wang Q, Yun G, An N, Shi Y, Fan J, Huang H, Su B (2015) The enhanced photocatalytic activity of Zn2+ doped TiO2 for hydrogen generation under artificial sunlight irradiation prepared by sol-gen method. J Sol-gel Sci Technol 73:341–349

    Article  CAS  Google Scholar 

  10. Zhang L, Hao X, Li J, Wang Y, Jin Z (2020) Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution. Chin J Catal 41:82–94

    Article  CAS  Google Scholar 

  11. Chen Z, Yu Y, She X, Xia K, Mo Z, Chen H, Song Y, Huang J, Li H, Xu H (2019) Constructing schottky junction between 2D semiconductor and metallic nickel phosphide for highly efficient catalytic hydrogen evolution. Appl Surf Sci 495:No. 143528

    Article  Google Scholar 

  12. An L, Han X, Li Y, Hou C, Wang H, Zhang Q (2019) ZnS-CdS-TaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity. J Sol-gel Sci Technol 91:82–91

    Article  CAS  Google Scholar 

  13. Kadi MW, Mohamed RM (2019) Synthesis of BaCeO3 nanoneedles and the effect of V, Ag, Au, Pt doping on the visible light hydrogen evolution in the photocatalytic water splitting reaction. J Sol-gel Sci Technol 91:138–145

    Article  CAS  Google Scholar 

  14. Hong D, Lyu L, Koga K, Shimoyama Y, Kon Y (2019) Plasmonic Ag@TiO2 core−shell nanoparticles for enhanced CO2 photoconversion to CH4. ACS Sustain Chem Eng 7:18955–18964

    Article  CAS  Google Scholar 

  15. Venkatachalam P, Kalaivani T, Krishnakumar N (2019) Perovskite sensitized erbium doped TiO2 photoanode solar cells with enhanced photovoltaic performance. Opt Mater 94:1–8

    Article  CAS  Google Scholar 

  16. Roh DK, Chi WS, Jeon H, Kim SJ, Kim JH (2014) High efficiency solid-state dye-sensitized solar cells assembled with hierarchical anatase pine tree- like TiO2 nanotubes. Adv Funct Mater 24:379–386

    Article  CAS  Google Scholar 

  17. An X, Shang Z, Bai Y, Liu H, Qu J (2019) Synergetic photocatalytic pure water splitting and self-supplied oxygen activation by 2-D WO3/TiO2 heterostructures. ACS Sustain Chem Eng 24:19902–19909

    Article  Google Scholar 

  18. Guayaquil-Sosa JF, Serrano-Rosales B, Valadés-Pelayo PJ, de Lasa H (2017) Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Appl Catal B 211:337–348

    Article  CAS  Google Scholar 

  19. Tian J, Hao P, Wei N, Cui H, Liu H (2015) 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catal 5:4530–4536

    Article  CAS  Google Scholar 

  20. Alido JPM, Sari FNI, Ting J (2019) Synthesis of Ag/hybridized 1T-2H MoS2/TiO2 heterostructure for enhanced visible-light photocatalytic activity. Ceram Int 45:23651–23657

    Article  CAS  Google Scholar 

  21. He J, Wang M, Wu X, Sun Y, Huang K, Chen H, Gao L, Feng S (2019) Influence of controlled Pd nanoparticles decorated TiO2 nanowire arrays for efficient photoelectrochemical water splitting. J Alloy Compd 785:391–397

    Article  CAS  Google Scholar 

  22. Phung HNT, Truong ND, Duong PA (2018) Influence of MoS2 deposition time on the photocatalytic activity of MoS2/V, N co-doped TiO2 heterostructure thin film in the visible light region. Curr Appl Phys 18:737–743

    Article  Google Scholar 

  23. Han X, An L, Hu Y, Li Y, Hou C, Wang H, Zhang Q (2020) Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Appl Catal B 265:NO. 118539

    Article  Google Scholar 

  24. Imparato C, Iervolino G, Fantouzzi M, Koral C, Macyk W, Kobielusz M, D’Errico G, Rea I, Girolamo RD, Stefano LD, Andreone A, Vaiano V, Rossi A, Aronne A (2020) Photocatalytic hydrogen evolution by co-catalystfree TiO2/C bulk heterostructures synthesized under mild conditions. RSC Adv 10:12519–12534

    Article  CAS  Google Scholar 

  25. Zhou W, Liu H, Wang J, Liu D, Du G, Cui J (2010) Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Inter 2:2385–2392

    Article  CAS  Google Scholar 

  26. Moudgil A, Sharma KK, Das S (2020) In2O3/TiO2 heterosturcture for highly responsive low-noise ultraviolet photodector. IEEE Trans electron devices 67:166–172

    Article  Google Scholar 

  27. Drmosh QA, Hezam A, Hossain MK, Qamar M, Yamani ZH, Byrappa K (2019) A novel Cs2O-Bi2O3-TiO2-ZnO heterostructure with direct Z-Scheme for effcient photocatalytic water splitting. Ceram Int 45:23756–23764

    Article  CAS  Google Scholar 

  28. Ding X, Li Y, Li C, Wang W, Wang L, Feng L, Han D (2019) 2D visible-light-driven TiO2@Ti3C2/g-C3N4 ternary heterostructure for high photocatalytic activity. J Mater Sci 54:9385–9396

    Article  CAS  Google Scholar 

  29. Wang X, Wang LL, Guo D, Ma LL, Zhu BL, Wang P, Wang GC, Zhang SM, Huang WP (2019) Fabrication and photocatalytic performance of C, N, F-tridoped TiO2 nanotubes. Catal Today 327:182–189

    Article  CAS  Google Scholar 

  30. Kar A, Kunku S, Patra A (2012) Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals. RSC Adv 2:10222–10230

    Article  CAS  Google Scholar 

  31. Guan RQ, Zhai HJ, Li JX, Qi YF, Li MX, Song MY, Zhao Z, Zhang JK, Wang DD, Tan HQ (2020) Reduced mesoporous TiO2 with Cu2S heterojunction and enhanced hydorgen production without noble metal cocatalyst. App. Surf Sci 507:No. 144772

    Article  Google Scholar 

  32. Zhou WJ, Yin ZY, Du YP, Huang X, Zeng ZY, Fan ZX, Liu H, Wang JY, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147

    Article  CAS  Google Scholar 

  33. Bai S, Wang L, Chen X, Du J, Xiong Y (2015) Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res 8:175–183

    Article  CAS  Google Scholar 

  34. Liu YP, Li YH, Peng F, Lin Y, Yang SY, Zhang SS, Wang HJ, Cao YH, Yu H (2019) 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl Catal B 241:236–245

    Article  CAS  Google Scholar 

  35. Ma B, Guan PY, Li QY, Zhang M, Zang SQ (2016) MOF-Derived Flower-like MoS2@TiO2 Nanohybrids with Enhanced Activity for Hydrogen Evolution. ACS Appl Mater Inter 8:26794–26800

    Article  CAS  Google Scholar 

  36. Wang L, Qian YT, Du JM, Zhang LY, Li G, Zhang B, Wang WM, Kang DJ (2020) Nanoflower-like MoS2 grown on porous TiO2 with enhanced hydrogen evolution activity. J Alloy Compd 821:No. 153203

    Article  Google Scholar 

  37. Liu XF, Xing ZP, Zhang Y, Li ZZ, Wu XY, Tan SY, Yu XJ, Zhu Q, Zhou W (2017) Fabrication of 3D flower-like black N-TiO2-x@MoS2 forunprecedented-high visible-light-driven photocatalytic performance. Appl Catal B 201:119–127

    Article  CAS  Google Scholar 

  38. Ramos-Sanchez JE, Camposeco R, Lee S, Rodriguez-González V (2020) Sustainable synthesis of AgNPs/strontium-titanate-perovskite-like catalysts for the photocatalytic production of hydrogen. Catal Today 341:112–119

    Article  CAS  Google Scholar 

  39. Xiang G, Li T, Zhuang J, Wang X (2010) Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem Commun 46:6801–6803

    Article  CAS  Google Scholar 

  40. Lu CG, Wei ZQ, Qiao HX, Wu XJ, Zhang HN, Shi JW, Huang SP (2020) Magnetically recoverable Cr and Mn Co-doped Zn0.95-xCr0.05MnxAl2O4 nanoparticles for dye degradation under simulated sunlight irradiation. J Electron Mater 49:6536–6546

    Article  CAS  Google Scholar 

  41. Wang HX, Liao B, Lu T, Ai YL, Liu G (2020) Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: Structural characterization and reaction mechanism. J Hazard Mater 385:No. 121552

    Article  Google Scholar 

  42. Browne MP, Novotný F, Bousa D, Sofer Z, Punera M (2019) Flexible Pt/graphene foil containing only 6.6 wt % of Pt has a comparable hydrogen evolution reaction performance to platinum metal. ACS Sustain Chem Eng 7:11721–11727

    Article  CAS  Google Scholar 

  43. Yan Y, Ge X, Liu Z, Wang J, Lee J, Wang X (2013) Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5:7768–7771

  44. Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262–1267

    Article  CAS  Google Scholar 

  45. Feng F, Yang W, Gao S, Sun C, Li Q (2018) Postillumination activity in a single-phase photocatalyst of Mo-doped TiO2 nanotube array from its photocatalytic “memory”. ACS Sustain Chem Eng 6:6166–6174

    Article  CAS  Google Scholar 

  46. Thainoi S, Sruaprapapich S, Sawadsaringkarn M, Panyakeow S (2006) n-GaAlAs on p-GaAs heterostructure solar cells grown by molecular beam epitaxy. Sol Energ Mat Sol C 90:2989–2994

    Article  CAS  Google Scholar 

  47. Ilanchezhiyan P, Kumar GM, Xiao F, Siva C, Yuldashev SU, Lee DJ, Jeon HC, Kang TW (2019) Surface induced charge transfer in CuxIn2-xS3 nanostructures and their enhanced photoelectronic and photocatalytic performance. Sol Energ Mat Sol C 191:100–107

    Article  CAS  Google Scholar 

  48. Khan S, Kubota Y, Lei W (2020) One-pot synthesis of (anatase/bronze-type)-TiO2/carbon dot polymorphic structures and their photocatalytic activity for H2 generation. Appl Surf Sci 526:146650

    Article  CAS  Google Scholar 

  49. Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510

    Article  CAS  Google Scholar 

  50. Gao P, Liu J, Lee S, Zhang T, Sun DD (2012) High quality graphene oxide–CdS–Pt nanocomposites for efficient photocatalytic hydrogen evolution. J Mater Chem 22:2292–2298

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21373120, 21301098, 21071086, and 21271110), project IRT13022, B12015, and Training Program for Top Students in Basic Subject (20180206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baolin Zhu or Weiping Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, Y., Zhu, B. et al. Performance of Pt–MoS2 co-modified 3-dimensional TiO2 nanoflowers in photocatalytic water splitting reaction. J Sol-Gel Sci Technol 98, 517–527 (2021). https://doi.org/10.1007/s10971-021-05506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05506-0

Keywords

Navigation