Skip to main content
Log in

Sol–gel synthesized siloxane hybrid materials for display and optoelectronic applications

  • Review Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Recently, displays and optoelectronics have made remarkable development because they are the most frequently exposed applications to humanity. The pixel size has become smaller and a new form factor is needed for displays and optoelectronics beyond rigid ones. New material breakthroughs enabling new form factors with plastic-like flexibility, mechanical toughness as well as glass-like thermal/mechanical resistance and low thermal expansion are required. Sol–gel-derived siloxane hybrid material (Hybrimer), showing synergetic properties of organic and inorganic (O–I) materials, can be realized by chemical hybridization and dense O–I co-networks. In addition, the characteristics of hybrimer can be easily optimized via control of organic functional groups, sol–gel reaction, and polymerization steps. First, a sol–gel reaction and polymerization, which enables chemical hybridization of O–I groups, are introduced. Then, the various display and optoelectronic applications using hybrimer achieved by control of properties are provided: (i) patterning, (ii) passivation, (iii) glass-fabric reinforced film, and (iv) color conversion films. This paper includes a brief overview of fabrication process and applications using hybrimer developed over the past decades.

Highlights

  • Sol–gel-derived siloxane hybrid material (hybrimer) is composed of a chemical hybridization between organic and siloxane phase.

  • Hybrimer can be simply fabricated using sol–gel reaction and polymerization.

  • Properties of hybrimer can be easily tuned by controlling the organic groups and sol–gel reaction.

  • Hybrimer can be applied to various display and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huitema E (2012) The future of displays is foldable. Inf Disp (1975) 28:6–10

    Google Scholar 

  2. Cima MJ (2014) Next-generation wearable electronics. Nat Biotechnol 32:642–643

    Article  CAS  Google Scholar 

  3. Roberts JA, Yaya LHP, Manolis C (2014) The invisible addiction: cell-phone activities and addiction among male and female college students. J Behav Addict 3:254–265

    Article  Google Scholar 

  4. Seong J, Jang J, Lee J, Lee M (2020) CMOS backplane pixel circuit with leakage and voltage drop compensation for an micro-LED display achieving 5000 PPI or higher. IEEE Access 8:49467–49476

    Article  Google Scholar 

  5. Lim HR, Kim HS, Qazi R et al. (2020) Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 32:1–43

    Google Scholar 

  6. Nishimura J, Hara K, Daitoh T et al. (2020) 3‐1: Invited paper: super bright 8K LCD with 10,000 nit realized by excellent light‐resistance characteristics of IGZO TFT backplane. SID Symp Dig Tech Pap 51:1–4

    Article  CAS  Google Scholar 

  7. Monickam S, Newman T, Szychowski B et al. (2020) 8‐2: invited paper: high refractive index materials for display and lighting applications. SID Symp Dig Tech Pap 51:86–89

    Article  CAS  Google Scholar 

  8. Liu W, Linjia M, Aichen X et al. (2020) 17‐6: invited paper: 4K HDR “Stacked‐Panel” TV based on dual‐cell LCD. SID Symp Dig Tech Pap 51:243–245

    Article  Google Scholar 

  9. Crawford GP (2005) Flexible flat panel displays. John Wiley & Sons, Ltd, Chichester, UK

  10. Mauro JC (2014) Grand challenges in glass science. Front Mater 1:20

    Article  Google Scholar 

  11. Mauro JC, Philip CS, Vaughn DJ, Pambianchi MS (2014) Glass science in the United States: current status and future directions. Int J Appl Glas Sci 5:2–15

    Article  Google Scholar 

  12. Kaltenbrunner M, Sekitani T, Reeder J et al. (2013) An ultra-lightweight design for imperceptible plastic electronics. Nature 499:458–463

    Article  CAS  Google Scholar 

  13. Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015–1022

    Article  CAS  Google Scholar 

  14. Choi MC, Kim Y, Ha CS (2008) Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 33:581–630

    Article  CAS  Google Scholar 

  15. Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Article  CAS  Google Scholar 

  16. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822

    Article  CAS  Google Scholar 

  17. Kang ES, Bae JY, Bae BS (2003) Measurement of thermo-optic coefficients in sol-gel hybrid glass films. J Sol-Gel Sci Technol 26:981–984

    Article  CAS  Google Scholar 

  18. Yang S, Kim J-S, Jin J et al. (2010) Thermal resistance of cycloaliphatic epoxy hybrimer based on sol-gel derived oligosiloxane for LED encapsulation. J Appl Polym Sci 117:2140–2145

    Article  CAS  Google Scholar 

  19. Buestrich R, Kahlenberg F, Popall M et al. (2001) ORMOCERs for optical interconnection technology. J Sol-Gel Sci Technol 20:181–186

    Article  CAS  Google Scholar 

  20. Haas KH, Wolter H (1999) Synthesis, properties and applications of inorganic-organic copolymers (ORMOCER®s). Curr Opin Solid State Mater Sci 4:571–580

    Article  CAS  Google Scholar 

  21. Park OH, Kim SJ, Bae BS (2004) Photochemical reactions in fluorinated sol-gel hybrid materials doped with a photolocking agent for direct micropatterning. J Mater Chem 14:1749–1753

    Article  CAS  Google Scholar 

  22. Kim WS, Yoon KB, Bae BS (2005) Nanopatterning of photonic crystals with a photocurable silica-titania organic-inorganic hybrid material by a UV-based nanoimprint technique. J Mater Chem 15:4535–4539

    Article  CAS  Google Scholar 

  23. Kim YH, Bae JY, Jin J, Bae BS (2014) Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant. ACS Appl Mater Interfaces 6:3115–3121

    Article  CAS  Google Scholar 

  24. Lee I, Ho Kim Y, Jang J et al. (2020) Solution-processed, photo-patternable fluorinated sol-gel hybrid materials as a bio-fluidic barrier for flexible electronic systems. Adv Electron Mater 6:1901065

    Article  CAS  Google Scholar 

  25. Choi G-M, Jin J, Shin D et al. (2017) Flexible hard coating: glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Adv Mater 29:1700205

    Article  Google Scholar 

  26. Jin J, Ko JH, Yang S, Bae BS (2010) Rollable transparent glass-fabric reinforced composite substrate for flexible devices. Adv Mater 22:4510–4515

    Article  CAS  Google Scholar 

  27. Park J, Hyun BG, An BW et al. (2017) Flexible transparent conductive films with high performance and reliability using hybrid structures of continuous metal nanofiber networks for flexible optoelectronics. ACS Appl Mater Interfaces 9:20299–20305

    Article  CAS  Google Scholar 

  28. Lee H, Lee HE, Wang HS et al. (2020) Hierarchically surface-textured ultrastable hybrid film for large-scale triboelectric nanogenerators. Adv Funct Mater 30:2005610

    Article  CAS  Google Scholar 

  29. Kim YH, Lee H, Kang SM, Bae BS (2019) Two-step-enhanced stability of quantum dots via silica and siloxane encapsulation for the long-term operation of light-emitting diodes. ACS Appl Mater Interfaces 11:22801–22808

    Article  CAS  Google Scholar 

  30. Kuk SK, Jang J, Han HJ et al. (2019) Siloxane-encapsulated upconversion nanoparticle hybrid composite with highly stable photoluminescence against heat and moisture. ACS Appl Mater Interfaces 11:15952–15959

    Article  CAS  Google Scholar 

  31. Kim YH, Koh S, Lee H et al. (2020) Photo-patternable quantum dots/siloxane composite with long-term stability for quantum dot color filters. ACS Appl Mater Interfaces 12:3961–3968

    Article  CAS  Google Scholar 

  32. Kang E-S, Park J-U, Bae B-S (2003) Effect of organic modifiers on the thermo-optic characteristics of inorganic-organic hybrid material films. J Mater Res 18:1889–1894

    Article  CAS  Google Scholar 

  33. Kim YH, Choi GM, Kim YH, Bae BS (2019) Mechanically improved sol-gel derived methacrylate-siloxane hybrid materials with urethane linkage. J Sol-Gel Sci Technol 89:111–119

    Article  CAS  Google Scholar 

  34. Kim YH, Choi GM, Shin D et al. (2018) Transparent urethane-siloxane hybrid materials for flexible cover windows with ceramic-like strength, yet polymer-like modulus. ACS Appl Mater Interfaces 10:43122–43130

    Article  CAS  Google Scholar 

  35. Kim YH, Choi G-M, Bae J et al. (2018) High-performance and simply-synthesized ladder-like structured methacrylate siloxane hybrid material for flexible hard coating. Polym (Basel) 10:449

    Article  Google Scholar 

  36. Jin J, Yang S, Bae BS (2012) Fabrication of a high thermal-stable methacrylate-silicate hybrid nanocomposite: Hydrolytic versus non-hydrolytic sol-gel synthesis of methacryl-oligosiloxanes. J Sol-Gel Sci Technol 61:321–327

    Article  CAS  Google Scholar 

  37. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, San Diego, p. 96

  38. Sassi Z, Bureau JC, Bakkali A (2002) Spectroscopic study of TMOS-TMSM-MMA gels: Previously identification of the networks inside the hybrid material. Vib Spectrosc 28:299–318

    Article  CAS  Google Scholar 

  39. Pierre AC (1998) Introduction to sol-gel processing. Springer US, Boston, MA

  40. Styskalik A, Skoda D, Barnes C, Pinkas J (2017) The power of non-hydrolytic sol-gel chemistry: a review. Catalysts 7:168

    Article  Google Scholar 

  41. Kim JS, Yang SC, Kwak SY et al. (2012) High performance encapsulant for light-emitting diodes (LEDs) by a sol-gel derived hydrogen siloxane hybrid. J Mater Chem 22:7954–7960

    Article  CAS  Google Scholar 

  42. Lee TH, Kim JH, Bae BS (2006) Synthesis of colorless imide hybrid nanocomposites using amine functionalized oligosiloxane nano-building clusters. J Mater Chem 16:1657–1664

    Article  CAS  Google Scholar 

  43. Kim YH, Lee H, Kang S-M et al. (2020) Long-term stable microlens array-integrated quantum dot/siloxane film for thin white backlight units. ACS Appl Nano Mater 3:10261–10269

    Article  CAS  Google Scholar 

  44. Kim H, Bae J, Kim YH et al. (2014) Low temperature curable epoxy siloxane hybrid materials for LED encapsulant. J Appl Polym Sci 131:39968

    Article  Google Scholar 

  45. Yang S, Kwak SY, Jin J, Bae BS (2009) Highly condensed epoxy-oligosiloxane-based hybrid material for transparent low- k dielectric coatings. ACS Appl Mater Interfaces 1:1585–1590

    Article  CAS  Google Scholar 

  46. Kim JS, Lee S, Hwang YH et al. (2012) Photo-curable sol-gel hybrid film as a dielectric layer by a thiol-ene reaction in air or N 2 for organic thin film transistors. Electrochem Solid-State Lett 15:G13

    Article  CAS  Google Scholar 

  47. Kim YH, Lim YW, Kim YH, Bae BS (2016) Thermally stable siloxane hybrid matrix with low dielectric loss for copper-clad laminates for high-frequency applications. ACS Appl Mater Interfaces 8:8335–8340

    Article  CAS  Google Scholar 

  48. Bae JY, Kim YH, Kim HY et al. (2013) Sol-gel synthesized linear oligosiloxane-based hybrid material for a thermally-resistant light emitting diode (LED) encapsulant. RSC Adv 3:8871–8877

    Article  CAS  Google Scholar 

  49. Kim JS, Yang SC, Park HJ, Bae BS (2011) Photo-curable siloxane hybrid material fabricated by a thiol–ene reaction of sol–gel synthesized oligosiloxanes. Chem Commun 47:6051–6053

    Article  CAS  Google Scholar 

  50. Phillips R (1984) Photopolymerization. J Photochem 25:79–82

    Article  CAS  Google Scholar 

  51. Crivello JV, Reichmanis E (2014) Photopolymer materials and processes for advanced technologies. Chem Mater 26:533–548

    Article  CAS  Google Scholar 

  52. Ligon SC, Husár B, Wutzel H et al. (2014) Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem Rev 114:577–589

    Article  Google Scholar 

  53. Kim J-S, Kim Y, Ko J-H, Bae B-S (2013) Thiol-Ene reaction derived sol-gel hybrid dielectric layer for oragnic thin film transistors. ECS Trans 50:83–88

    Article  Google Scholar 

  54. Penczek S, Cypryk M, Duda A et al. (2007) Living ring-opening polymerizations of heterocyclic monomers. Prog Polym Sci 32:247–282

    Article  CAS  Google Scholar 

  55. Crivello JV, Malik R (1997) Synthesis and photoinitiated cationic polymerization of monomers with the silsesquioxane core. J Polym Sci Part A Polym Chem 35:407–425

    Article  CAS  Google Scholar 

  56. Warley RL, Feke DL, Manas-Zloczower I (2005) Effect of peroxide crosslinking on the dynamic modulus of silicone rubber. J Appl Polym Sci 97:1504–1512

    Article  CAS  Google Scholar 

  57. Bae JY, Jang J, Bae BS (2017) Transparent, thermally stable methyl siloxane hybrid materials using sol-gel synthesized vinyl-methyl oligosiloxane resin. J Sol-Gel Sci Technol 82:253–260

    Article  CAS  Google Scholar 

  58. Yang S, Kim J-S, Jin J et al. (2011) Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant. J Appl Polym Sci 122:2478–2485

    Article  CAS  Google Scholar 

  59. Kim WS, Lee JH, Shin SY et al. (2004) Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials. IEEE Photonics Technol Lett 16:1888–1890

    Article  Google Scholar 

  60. Ko YH, Prabhakaran P, Choi S et al. (2020) Environmentally friendly quantum-dot color filters for ultra-high-definition liquid crystal displays. Sci Rep. 10:15817

    Article  CAS  Google Scholar 

  61. Il KimT, Kim RH, Rogers JA (2012) Microscale inorganic light-emitting diodes on flexible and stretchable substrates. IEEE Photonics J 4:607–612

    Article  Google Scholar 

  62. Jiang H (2013) Nitride microLEDs and beyond - a decade progress review. Opt Express 21:A475–A484

    Article  CAS  Google Scholar 

  63. Kim WS, Kim KS, Kim YC, Bae BS (2005) Thermowetting embossing nanoimprinting of the organic-inorganic hybrid materials. Thin Solid Films 476:181–184

    Article  CAS  Google Scholar 

  64. Ovsianikov A, Viertl J, Chichkov B et al. (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2:2257–2262

    Article  CAS  Google Scholar 

  65. Usui M, Hikita M, Yoshimura R, et al (1998) An optical coupling technique for parallel optical interconnection modules using polymeric optical waveguide films. In: 2nd 1998 IEMT/IMC Symposium. Institute of Electrical and Electronics Engineers Inc., pp 127–132

  66. Chandross EA, Pryde CA, Tomlinson WJ, Weber HP (1974) Photolocking-A new technique for fabricating optical waveguide circuits. Appl Phys Lett 24:72–74

    Article  CAS  Google Scholar 

  67. Uchimura H, Takenoshita T, Fujii M (1998) Development of a “laminated waveguide.”. IEEE Trans Micro Theory Tech 46:2438–2443

    Article  Google Scholar 

  68. Bae BS, Park OH, Charters R et al. (2001) Direct laser writing of self-developed waveguides in benzyldimethylketal-doped sol-gel hybrid glass. J Mater Res 16:3184–3187

    Article  CAS  Google Scholar 

  69. Bae BS (2004) High photosensitive sol-gel hybrid materials for direct photo-imprinting of micro-optics. J Sol-Gel Sci Technol 31:309–315

    Article  CAS  Google Scholar 

  70. Jung JI, Park OH, Bae BS (2003) Fabrication of channel waveguides by photochemical self-developing in doped sol-gel hybrid glass. J Sol-Gel Sci Technol 26:897–901

    Article  CAS  Google Scholar 

  71. Kim WS, Kim KS, Eo YJ et al. (2005) Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure. J Mater Chem 15:465–469

    Article  CAS  Google Scholar 

  72. Kim WS, Choi DG, Bae BS (2006) Ultraviolet-nanoimprint of 40 nm scale patterns using functionally modified fluorinated hybrid materials. Nanotechnology 17:3319–3324

    Article  CAS  Google Scholar 

  73. Park JU, Kim WS, Bae BS (2003) Photoinduced low refractive index in a photosensitive organic-inorganic hybrid material. J Mater Chem 13:738–741

    Article  CAS  Google Scholar 

  74. Jung KH, Bae BS (2008) Synthesis and characterization of photopatternable epoxy hybrid materials for the fabrication of thick and thermally stable microstructures with a high aspect ratio. J Appl Polym Sci 108:3169–3176

    Article  CAS  Google Scholar 

  75. Patel P (2011) Solid-state lighting: the future looks bright. MRS Bull 36:678–680

    Article  CAS  Google Scholar 

  76. Matyba P, Yamaguchi H, Chhowalla M et al. (2011) Flexible and metal-free light-emitting electrochemical cells based on graphene and PEDOT-PSS as the electrode materials. ACS Nano 5:574–580

    Article  CAS  Google Scholar 

  77. Tao P, Li Y, Siegel RW, Schadler LS (2013) Transparent dispensible high-refractive index ZrO2/epoxy nanocomposites for LED encapsulation. J Appl Polym Sci 130:3785–3793

    Article  CAS  Google Scholar 

  78. Narendran N, Gu Y, Freyssinier JP et al. (2004) Solid-state lighting: failure analysis of white LEDs. J Cryst Growth 268:449–456

    Article  CAS  Google Scholar 

  79. Narendran N, Gu Y (2005) Life of LED-based white light sources. J Disp Technol 1:167–171

    Article  CAS  Google Scholar 

  80. Chhajed S, Lee W, Cho J et al. (2011) Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p -type GaN. Appl Phys Lett 98:071102

    Article  Google Scholar 

  81. Yang S, Kwak SY, Jin J et al. (2012) Thermally resistant UV-curable epoxy-siloxane hybrid materials for light emitting diode (LED) encapsulation. J Mater Chem 22:8874–8880

    Article  CAS  Google Scholar 

  82. Kim JS, Yang S, Bae BS (2010) Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation. Chem Mater 22:3549–3555

    Article  CAS  Google Scholar 

  83. Würtele MA, Kolbe T, Lipsz M et al. (2011) Application of GaN-based ultraviolet-C light emitting diodes - UV LEDs - for water disinfection. Water Res 45:1481–1489

    Article  Google Scholar 

  84. Asif Khan M (2006) AlGaN multiple quantum well based deep UV LEDs and their applications. Phys status solidi 203:1764–1770

    Article  Google Scholar 

  85. Shatalov M, Jain R, Saxena T et al. (2017) Development of deep UV LEDs and current problems in material and device technology. Semicond Semimet 96:45–83

    Article  CAS  Google Scholar 

  86. Huang W, Zhang Y, Yu N, Yuan Y (2007) Studies on UV-stable silicone-epoxy resins. J Appl Polym Sci 104:3954–3959

    Article  CAS  Google Scholar 

  87. NAKAMURA N, SEKINE M, MATSUMOTO S et al. (2008) Optical characteristics of spherical glass encapsulated LEDs. J Ceram Soc Jpn 116:1075–1078

    Article  CAS  Google Scholar 

  88. Bae JY, Kim YH, Kim HY et al. (2015) Ultraviolet light stable and transparent sol-gel methyl siloxane hybrid material for UV Light-Emitting Diode (UV LED) encapsulant. ACS Appl Mater Interfaces 7:1035–1039

    Article  CAS  Google Scholar 

  89. Bae JY, Kim HY, Lim YW et al. (2016) Optically recoverable, deep ultraviolet (UV) stable and transparent sol-gel fluoro siloxane hybrid material for a UV LED encapsulant. RSC Adv 6:26826–26834

    Article  CAS  Google Scholar 

  90. Rathore JS, Interrante LV, Dubois G (2008) Ultra low- k films derived from hyperbranched polycarbosilanes (HBPCS). Adv Funct Mater 18:4022–4028

    Article  CAS  Google Scholar 

  91. Lee B, Park YH, Hwang YT et al. (2005) Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres. Nat Mater 4:147–151

    Article  CAS  Google Scholar 

  92. Lee HJ, Lin EK, Wang H et al. (2002) Structural comparison of hydrogen silsesquioxane based porous low-k thin films prepared with varying process conditions. Chem Mater 14:1845–1852

    Article  CAS  Google Scholar 

  93. Matsumura H (1989) Silicon nitride produced by catalytic chemical vapor deposition method. J Appl Phys 66:3612–3617

    Article  CAS  Google Scholar 

  94. Oh JH, Kwak SY, Yang SC, Bae BS (2010) Highly condensed fluorinated methacrylate hybrid material for transparent low- k passivation layer in LCD-TFT. ACS Appl Mater Interfaces 2:913–918

    Article  CAS  Google Scholar 

  95. Li Y, Meng L, Yang Y et al. (2016) High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun 7:10214

    Article  CAS  Google Scholar 

  96. Sampath S, Ramachandra GS (2008) Effects of glass fibers on light transmittance and color of fiber-reinforced composite. Dent Mater 24:34–38

    Article  CAS  Google Scholar 

  97. Dangtungee R, Somchua S, Siengchin S (2012) Recycling glass fiber/epoxy resin of waste printed circuit boards: Morphology and mechanical properties. Mech Compos Mater 48:325–330

    Article  CAS  Google Scholar 

  98. Jin J, Lee J, Jeong S et al. (2013) High-performance hybrid plastic films: a robust electrode platform for thin-film optoelectronics. Energy Environ Sci 6:1811–1817

    Article  CAS  Google Scholar 

  99. Im HG, Jung SH, Jin J et al. (2014) Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: A highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano 8:10973–10979

    Article  CAS  Google Scholar 

  100. Im HG, An BW, Jin J et al. (2016) A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels. Nanoscale 8:3916–3922

    Article  CAS  Google Scholar 

  101. Im HG, Jin J, Ko JH et al. (2014) Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability. Nanoscale 6:711–715

    Article  CAS  Google Scholar 

  102. Im HG, Jeong S, Jin J et al. (2016) Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Mater 8:e282

    Article  CAS  Google Scholar 

  103. Yao Y, Tao J, Zou J et al. (2016) Light management in plastic-paper hybrid substrate towards high-performance optoelectronics. Energy Environ Sci 9:2278–2285

    Article  CAS  Google Scholar 

  104. Lim Y-W, Kwon OE, Kang S-M et al. (2018) Built-in haze glass-fabric reinforced siloxane hybrid film for efficient organic light-emitting diodes (OLEDs). Adv Funct Mater 28:1802944

    Article  Google Scholar 

  105. Lee H, Kim YH, Lim Y et al. (2020) Flexible but mechanically robust hazy quantum dot/glass fiber reinforced film for efficiently luminescent surface light source. Adv Opt Mater 8:1902178

    Article  CAS  Google Scholar 

  106. Liu Z, Liu S, Wang K, Luo X (2010) Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging. Appl Opt 49:247–257

    Article  CAS  Google Scholar 

  107. Wang X, Zhou G, Zhang H et al. (2012) Luminescent properties of yellowish orange Y 3Al 5-xSi xO 12-xN x:Ce phosphors and their applications in warm white light-emitting diodes. J Alloy Compd 519:149–155

    Article  CAS  Google Scholar 

  108. Zhao M, Zhang Q, Xia Z (2020) Narrow-band emitters in LED backlights for liquid-crystal displays. Mater Today 40:246–265

    Article  CAS  Google Scholar 

  109. Kwak S-Y, Yang S, Kim NR et al. (2011) Thermally stable, dye-bridged nanohybrid-based white light-emitting diodes. Adv Mater 23:5767–5772

    Article  CAS  Google Scholar 

  110. Lee J, Sundar VC, Heine JR et al. (2000) Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv Mater 12:1102–1105

    Article  CAS  Google Scholar 

  111. Zhao B, Yao Y, Gao M et al. (2015) Doped quantum dot@silica nanocomposites for white light-emitting diodes. Nanoscale 7:17231–17236

    Article  CAS  Google Scholar 

  112. Klimov VI, Mikhailovsky AA, Xu S et al. (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317

    Article  CAS  Google Scholar 

  113. Klein DL, Rotht R, Lim AKL et al. (1997) A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389:699–701

    Article  CAS  Google Scholar 

  114. Shirasaki Y, Supran GJ, Bawendi MG, Bulović V (2013) Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7:13–23

    Article  CAS  Google Scholar 

  115. Kim HY, Yoon DE, Jang J et al. (2016) Quantum dot/siloxane composite film exceptionally stable against heat and moisture. J Am Chem Soc 138:16478–16485

    Article  CAS  Google Scholar 

  116. Pechstedt K, Whittle T, Baumberg J, Melvin T (2010) Photoluminescence of colloidal CdSe/ZnS quantum dots: The critical effect of water molecules. J Phys Chem C 114:12069–12077

    Article  CAS  Google Scholar 

  117. Liu C, Li Z, Hajagos TJ et al. (2017) Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano 11:6422–6430

    Article  CAS  Google Scholar 

  118. Kim J-S, Yang S, Park H, Bae B-S (2011) Photo-curable siloxane hybrid material fabricated by a thiol–ene reaction of sol–gel synthesized oligosiloxanes. Chem Commun 47:6051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wearable Platform Materials Technology Center (WMC) supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (NRF-2016R1A5A1009926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Soo Bae.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.H., Lee, I., Lee, H. et al. Sol–gel synthesized siloxane hybrid materials for display and optoelectronic applications. J Sol-Gel Sci Technol 107, 32–45 (2023). https://doi.org/10.1007/s10971-021-05491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05491-4

Keywords

Navigation