Skip to main content
Log in

The influence of posttreatment processes on the structures and the optical and electrical properties of CuInS2 and its heterojunction with various sulfides (CdS, CdZnS, and CdCuS)

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstracts

As the first essential step toward understanding how to obtain an efficient CuInS2-based solar cell, this paper studied the photoelectric properties of CuInS2 and sulfide P–N heterojunction. For this purpose, the single-source evaporation method and the chemical bath deposition had been applied to prepare CuInS2 films and sulfide films (CdS, CdZnS, and CdCuS), respectively. The powder source was obtained from CuInS2 polycrystalline ingot, which consists of CuInS2 chalcopyrite phase. The segregated CuxS secondary phase on the surfaces of CuInS2 films could be removed by etching of bromine–methanol (BM) solution. The structures of ternary sulfide films (CdZnS and CdCuS) were similar to that of CdS film. The transient photocurrent of CdZnS thin film was highest, which might be related to the high reaction activity and the good crystal quality. Furthermore, the IV response of CuInS2 and CdZnS heterojunction was studied, which was close to the ideal diode type behavior. The low reverse saturation current density, the optimal diode ideality factor, and the high barrier height were obtained from the IV curve of CuInS2 and CdZnS heterojunction, which might mean that the CdZnS film could be suitable to use in photovoltaic application.

The opening voltage of the IV curve was related to CdZnS film the steepest, showing remarkable rectification characteristic.

Highlights

  • The single source evaporation method and the chemical bath deposition had been applied to prepare CuInS2 films and sulfide films (CdS, CdZnS and CdCuS), respectively.

  • The segregated CuxS secondary phase on the surfaces of CuInS2 films could be removed by etching of Bromine Methanol (BM) solution.

  • The low reverse saturation current density, the optimal diode ideality factor and the high barrier height were obtained from the I-V curve of CuInS2 and CdZnS heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Amerioun MH, Ghazi ME, Izadifard M (2018) Studying physical properties of CuInS2 absorber layers grown by spin coating method on different kinds of substrates. Mater Res Express 5:036408

    Article  Google Scholar 

  2. Siemer K, Klaer J, Luck I, Bruns J, Klenk R, Braunig D (2001) Efficient CuInS2 solar cells from a rapid thermal process (RTP). Sol Energy Mater Sol Cells 67:159–166

    Article  CAS  Google Scholar 

  3. Hiroi H, Iwata Y, Adachi S, Sugimoto H, Yamada A (2016) New world-record efficiency for pure-sulfide Cu(In,Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE J Photovolt 6(3):760–763

    Article  Google Scholar 

  4. Chen W, Qi J, Dong C, Chen J, Shen Z, He Y, Yang S, Chen T, Chen C, Li Y, Li M-D, Mingtai W (2019) Solution-processed in situ growth of CuInS2 nanoparticle films for efficient planar heterojunction solar cells with a dual nature of charge generation. ACS Appl Energy Mater 2:5231–5242

    Article  CAS  Google Scholar 

  5. Ben Belgacem J, Nouiri M, Medjnoun K, Djessas K, Ayadi ZB (2018) CuInS2 thin films obtained through an innovative CSVT deposition method from solvothermal-generated precursors Mater Sci Semicond Process 83:224–230

    Article  Google Scholar 

  6. Khavar AHC, Mahjoub AR, Taghavinia N (2017) Improved performance of low cost CuInS2 superstrate-type solar cells using Zinc assisted spray pyrolysis processing. J Phys D: Appl Phys 50:485103

    Article  Google Scholar 

  7. Sangamesha MA, Pushpalatha K, Shekar GL (2018) Effect of Co doping on CIS2 thin films. Chin J Phys 56:1147–1157

    Article  CAS  Google Scholar 

  8. Zribi M, Rabeh MB, Brini R, Kanzari M, Rezig B (2006) Influence of Sn incorporation on the properties of CuInS2 thin films grown by vacuum evaporation method. Thin Solid Films 511:125–129

    Article  Google Scholar 

  9. Lomuscio A, Rödel T, Schwarz T, Gault B, Melchiorre M, Raabe D, Siebentritt S (2019) Quasi-fermi-level splitting of Cu-poor and Cu-rich CuInS2 absorber layers. Phys Rev Appl 11:054052

    Article  CAS  Google Scholar 

  10. Roberto Felix A, Weber O, Zander H, Rodriguez-Álvarez B-A, Schubert J, Klaer RG, Wilks H-W, Schock R, Mainz M (2019) Bar, selenization of CuInS2 by rapid thermal processing-an alternative approach to induce a band gap grading in chalcopyrite thin-film solar cell absorbers? J Mater Chem A 7:2087–2094

    Article  Google Scholar 

  11. Storkel U, Aggour M, Murrell CP, Lewerenz HJ (2001) Electrochemical treatment of CuInS2. Thin Solid Films 387:182–184

    Article  CAS  Google Scholar 

  12. Ramaiah KS, Pilkington RD, Hill AE, Tomlinson RD, Bhatnagar AK (2001) Structural and optical investigations on CdS thin films grown by chemical bath technique Mater Chem Phys 68:22–30

    Article  CAS  Google Scholar 

  13. Cheng T-M, Cai C-H, Huang W-C, Xu W-L, Tu L-H, Lai C-H (2020) Efficiency enhancement of Cu(In,Ga)(S,Se)2 solar cells by indium-doped CdS buffer layers. ACS Appl Mater Interfaces 12:18157–18164

    Article  CAS  Google Scholar 

  14. AlFaify S, Haritha L, Aslam Manthrammel M, Ganesh V, Chandekar KV, Shaikh SS, Mohd S (2020) Fabrication and characterization of Sn:CdS films for optical-nonlinear-limiting applications. Opt Laser Technol 126:106122

    Article  CAS  Google Scholar 

  15. Mukherjee A, Das MR, Banerjee A, Mitra P (2020) Influence of nickel incorporation in CdS: structural and electrical studies. Thin Solid Films 704:138005

    Article  CAS  Google Scholar 

  16. Khan ZR, Munirah MS, Alfaify S (2020) Opto-dielectric-nonlinear properties of Na–Zn–CdS alloys nanostructure thin films: role of Zn doping. Phys B: Phys Condens Matter 588:412194

    Article  CAS  Google Scholar 

  17. Sharma R, Shim S, Mane RS, Ganesh T, Ghule A, Cai G, Ham D-H, Min S-K, Lee W, Han S-H (2009) Optimization of growth of ternary CuInS2thin films by ionic reactions in alkalinechemical bath as n-type photoabsorber layer. Mater Chem Phys 116:28–33

    Article  CAS  Google Scholar 

  18. Matsushita H, Mihira T, Takizawa T (1999) Chemical reaction process and the single crystal growth of CuInS2 compound. J Cryst Growth 197:169–176

    Article  CAS  Google Scholar 

  19. Oh Y, Yang W, Kim J, Woo K, Jooho M (2015) Aqueous solution-phase selenized CuIn(S, Se)2thin film solar cells annealed under inert atmosphere. ACS Appl Mater Interfaces 7:22570–22577

    Article  CAS  Google Scholar 

  20. Nan W, Zhu-Rong L, Xin W, Xue-Qing X, Jun F, Jun-Xia W, Hua-Fang G (2015) CuInS2 quantum dot-sensitized solar cells fabricated via a linker-assisted adsorption approach. Acta Phys-Chim Sin 31(7):1331–1337

    Article  Google Scholar 

  21. Nanu M, Schoonman J, Goossens A (2004) Raman and PL study of defect-ordering in CuInS thin films. Thin Solid Films 451–452:193–197

    Article  Google Scholar 

  22. Lee D-Y, Kim J (2010) Characterization of sprayed CuInS2 films by XRD and Raman spectroscopy measurements. Thin Solid Films 518:6537–6541

    Article  CAS  Google Scholar 

  23. Ueng HY, Hwang HL (1987) Defect identification in undoped and phosphorus-doped CuInS2 based on deviations from ideal chemical formula. J Appl Phys 62(2):434–439

    Article  CAS  Google Scholar 

  24. Ogawa Y, Jager-Waldau A, Hua TH, Hashimoto Y, Ito K (1996) Influence of KCN treatment on CuInS2 thin films. Appl Surf Sci 92:232–236

    Article  CAS  Google Scholar 

  25. Othman AA, Ali MA, Ibrahim EMM, Osman MA (2016) Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method. J Alloy Compd 683:399–411

    Article  CAS  Google Scholar 

  26. Balandin A, Wang KL, Kouklin N, Bandyopadhyay S (2000) Raman spectroscopy of electrochemically self-assembled CdS quantum dots. Appl Phys Lett 76(2):137–139

    Article  CAS  Google Scholar 

  27. Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D, Tang J (2014) CuSbS2 as a Promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem Mater 26:3135–3143

    Article  CAS  Google Scholar 

  28. Pathan HM, Desai JD, Lokhande CD (2002) Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films. Appl Surf Sci 202:47–56

    Article  CAS  Google Scholar 

  29. Caglar M, Ilican S, Cagla Y, Yakuphanoglu F (2009) Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl Surf Sci 255:4491–4496

    Article  CAS  Google Scholar 

  30. Ay I, Tolunay H (2007) The influence of ohmic back contacts on the properties of a-Si:H Schottky diodes. Solid-State Electron 51(3):381–386

    Article  CAS  Google Scholar 

  31. Pietruszka R, Luka G, Kopalko K, Zielony E, Bieganski P, Placzek-Popko E, Godlewski M (2014) Photovoltaic and photoelectrical response of n-ZnO/p-Si heterostructures with ZnO films grown by an atomic layer deposition method. Mater Sci Semicond Process 25:190–196

    Article  CAS  Google Scholar 

  32. Venugopal N, Kaur G, Mitra A (2014) Plasmonics effect of Ag nanoislands covered n-Al: ZnO/p-Si heterostructure. Appl Surf Sci 320:30–42

    Article  CAS  Google Scholar 

  33. Chirakkara S, Krupanidhi SB (2012) Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer. Thin Solid Films 520:5894–5899

    Article  CAS  Google Scholar 

  34. Klason P, Rahman MM, Hu QH, Nur O, Turan R, Willander M (2009) Fabrication and characterization of p-Si/n-ZnO hetero-structured junctions. Microelectron J 40(4–5):706–710

    Article  CAS  Google Scholar 

  35. Chen Z, Liu X, Zhao Y, Liang X, Chen Y, Wang L, Shen Y (2018) The study of the CdS film and the carrier transport characteristics of CdS/CuInS2 pn junction. J Sol-Gel Sci Technol 85:12–22

    Article  CAS  Google Scholar 

  36. Hengel I, Neisser A, Klenk R, Lux-Steiner MCH (2000) Current transport in CuInS 2:Ga/Cds/Zno—solar cells. Thin Solid Films 361–362:458–462

    Article  Google Scholar 

  37. Nicolaou C, Zacharia A, Delimitis A, Itskos G, Giapintzakis J (2020) Single-step growth of high quality CIGS/CdS heterojunctions using pulsed laser deposition. Appl Surf Sci 511:145547

    Article  CAS  Google Scholar 

  38. Johnson B, Klaer J, Vollmer A, Lauermann I (2012) Electronic effects of Cd on the formation of the CdS/CuInS2 heterojunction. J Vac Sci Technol A 30(4):04D114

    Article  Google Scholar 

  39. Klein A, Loher T, Tomm Y, Pettenkofer C, Jaegermann W (1997) Band lineup between CdS and ultra high vacuum-cleaved CuInS2 single crystals. Appl Phys Lett 70(10):1299–1301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Ying, M. & Zhao, Y. The influence of posttreatment processes on the structures and the optical and electrical properties of CuInS2 and its heterojunction with various sulfides (CdS, CdZnS, and CdCuS). J Sol-Gel Sci Technol 97, 672–684 (2021). https://doi.org/10.1007/s10971-021-05473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05473-6

Keywords

Navigation