Skip to main content
Log in

Studies of crystallization kinetics and optical properties of ZnO films prepared by sol–gel technique

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The crystallization of ZnO prepared by sol–gel technique was investigated under nonisothermal conditions by differential scanning calorimetry (DSC) and prediction isothermal method. The transformation from the amorphous to crystalline state was investigated by X-ray diffraction (XRD). The influence of the annealing temperature on the structure of the ZnO was studied by Filed Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM). Two exothermic changes were reported between the temperature ranges 590–710 K and 645–750 K for first and second transition, respectively. The isoconversional methods of Friedman, Ozawa and Flynn and Wall (FWO), Kissinger–Akahira–Sunose and the Vyazovkin (minimizing) were used to determine the variation of the effective activation energy with the extent of crystallization, Eα (α) and hence, with temperature Eα (T). In addition, the activation energy was calculated from predicted isothermal results. Analysis of the obtained data shows that the activation energy of crystallization is not constant but varies with the degree of conversion and, hence, with temperature. The value of the local Avrami exponent, n (α), varies within 1.88–1.97 for isothermal study and within 2.35–2.4 for nonisothermal process. By using the Johnson–Mehl–Avrami (JMA) model, a good fit was achieved between experimental and theoretical calculation of the reaction (crystallization) rate. The optical energy gap decreased with increasing annealing temperature.

Highlights

  • The crystallization kinetics of ZnO films prepared by sol-gel technique studied.

  • Nonisothermal and predicted isothermal methods were used.

  • The kinetic triplets were obtained.

  • The crystallization mechanism follows the Avrami–Erofeev mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ellmer E, Klein A, Rech B (2008) Transparent conductive zinc oxide basics and applications in thin film solar cells. Springer, Berlin. ISBN 978-3-540-73611-0

  2. Klingshirn CF, Meyer BK, Waag A, Hoffmann A, Geurts J (2010) Zinc oxide from fundamental properties towards novel applications. Springer, Berlin. https://doi.org/10.1007/978-3-642-10577-7

  3. Alias SS, Mohamad AA (2014) Synthesis of zinc oxide by sol-gel method for photoelectrochemical cells. Springer. https://doi.org/10.1007/978-981-4560-77-1

  4. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide-from synthesis to application: a review. Materials 7:2833–2881

    Article  Google Scholar 

  5. Bharat TC, Shubham, Mondal S, Gupta HS, Singh PK, Das AK (2019) Synthesis of doped zinc oxide nanoparticles: a review. Mater Today-Proc 11:767–775

    Article  CAS  Google Scholar 

  6. Li H, Wang J, Liu H, Yang C, Xu H, Li X, Cui H (2004) Sol-gel preparation of transparent zinc oxide films with highly preferential crystal orientation. Vacuum 77:57–62

    Article  CAS  Google Scholar 

  7. Spanhel L (2006) Colloidal ZnO nanostructures and functional coatings: a survey. J Sol-Gel Sci Techn 39:7–24

    Article  CAS  Google Scholar 

  8. Schmidt H (2006) Considerations about the sol-gel process: from the classical sol-gel route to advanced chemical nanotechnologies. J Sol-Gel Sci Techn 40:115–130

    Article  CAS  Google Scholar 

  9. Copuroglu M, Koh LHK, O’Brien S, Crean GM (2009) Comparative characterization of zinc oxide thin films prepared from zinc acetate with or without water of hydration via the sol-gel method. J Sol-Gel Sci Technol 52:432–438

    Article  CAS  Google Scholar 

  10. Malfatti L, Innocenzi P (2011) Sol-gel chemistry: from self-assembly to complex materials. J Sol-Gel Sci Technol 60:226–235

    Article  CAS  Google Scholar 

  11. Dutta D (2016) Optimization of process parameters and its effect on particle size and morphology of ZnO nanoparticle synthesized by sol-gel method. J Sol-Gel Sci Technol 77:48–56

    Article  CAS  Google Scholar 

  12. Tatarchuk V, Druzhinina I, Zaikovskii V, Maksimovskii E, Korolkov I, Antonova O (2018) Synthesis of ZnO nanoparticles and a composite with polyacrylamide in acrylamide solutions. J Sol-Gel Sci Technol 85:66–75

    Article  CAS  Google Scholar 

  13. Mika K, Socha RP, Nyga P, Wiercigroch E, Malek K, Jarosz M, Uchacz T, Sulka GD, Zaraska L (2019) Electrochemical synthesis and characterization of dark nanoporous zinc oxide films. Electrochim Acta 305:349–359

    Article  CAS  Google Scholar 

  14. Tantray AM, Shah MA (2020) Photo electrochemical ability of dense and aligned ZnO nanowire arrays fabricated through electrochemical anodization. Chem Phys Lett 747:137346

    Article  Google Scholar 

  15. Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA (2006) Physical properties of ZnO thin films deposited by spray pyrolysis technique. Appl Surf Sci 252:7844–7848

    Article  CAS  Google Scholar 

  16. Prajapati CS, Pandey SN, Sahay PP (2011) Sensing of LPG with nanostructured zinc oxide thin films grown by spray pyrolysis technique. Phys B 406:2684–2688

    Article  CAS  Google Scholar 

  17. Ardekani SR, Aghdam ASR, Nazari M, Bayat A, Yazdani E, Saievar-Iranizad E (2011) A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. J Anal Appl Pyrolysis 141(2019):104631

    Google Scholar 

  18. Wittawat R, Rittipun R, Jarasfah M, Nattaporn B (2020) Synthesis of ZnO/TiO2 spherical particles for blue light screening by ultrasonic spray pyrolysis. Mater Today Commun 24:101126

    Article  CAS  Google Scholar 

  19. Bacsa R, Kihn Y, Verelst M, Dexpert J, Bacsa W, Serp P (2007) Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapour deposition and their characterization. Surf Coat Technol 201:9200–9204

    Article  CAS  Google Scholar 

  20. Athma PV, Martinez AI, Johns N, Safeera TA, Reshmi R, Anila EI (2015) Nanostructured zinc oxide thin film by simple vapor transport deposition. Superlattice Microst 85:379–384

    Article  CAS  Google Scholar 

  21. Thareja RK, Shukla S (2007) Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid. Appl Surf Sci 253:8889–8895

    Article  CAS  Google Scholar 

  22. Zamiri R, Zakaria A, Ahangar HA, Darroudi M, Zak AK, Drummen GPC (2012) Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation. J Alloy Compd 516:41–48

    Article  CAS  Google Scholar 

  23. Kanakkillam SS, Shaji S, Krishnan B, Vazquez-Rodriguez S, Martinez JAA, Palma MIM, Avellaneda DA (2020) Nanoflakes of zinc oxide: cobalt oxide composites by pulsed laser fragmentation for visible light photocatalysis. Appl Surf Sci 501:144223

    Article  CAS  Google Scholar 

  24. Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour-Effic Technol 3:406–413

    Google Scholar 

  25. Bandeira M, Giovanela M, Roesch-Ely M, Devine DM, Crespo JS (2020) Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism of formation. Sustain Chem Pharm 15:100223

    Article  Google Scholar 

  26. Cunha DM, Ito NM, Xavier AM, Arantes JT, Souza FL (2013) Zinc oxide flower-like synthesized under hydrothermal conditions. Thin Solid Films 537:97–101

    Article  CAS  Google Scholar 

  27. Delgado-Licona F, Lopez-Guajardo EA, Gonzalez-Garcia J, Nigam KDP, Montesinos-Castellanos A (2020) Intensified tailoring of ZnO particles in a continuous flow reactor via hydrothermal synthesis. Chem Eng J 396:125281

    Article  CAS  Google Scholar 

  28. Basnet P, Chatterjee S (2020) Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—a systematic review. Nano-Struct Nano-Objects 22:100426

    Article  CAS  Google Scholar 

  29. Cozzoli PD, Curri ML, Agostiano A, Leo G, Lomascolo M (2003) ZnO nanocrystals by a non-hydrolytic route: synthesis and characterization. J Phys Chem B 107:4756–4762

    Article  CAS  Google Scholar 

  30. Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36:191–217

    Article  CAS  Google Scholar 

  31. Joraid AA, Alhosuini IMA (2014) Effect of heating rate on the kinetics and mechanism of crystallization in amorphous Se85Te10Pb5 glasses. Thermochim Acta 595:28–34

    Article  CAS  Google Scholar 

  32. International Centre for Diffraction Data (ICDD), PDF-4+ (2018) 12 Campus Boulevard, Newtown Square, PA 19073–3273, USA

  33. Unni KNN, Menon CS (2000) Electrical, optical and structural studies on nickel phthalocyanine thin films. Mater Lett 45:326–330

    Article  Google Scholar 

  34. Joraid AA (2007) The effect of temperature on nonisothermal crystallization kinetics and surface structure of selenium thin films. Phys B 390:263–269

    Article  CAS  Google Scholar 

  35. Wu R, Xie C, Xia H, Hu J, Wang A (2000) The thermal physical formation of ZnO nanoparticles and their morphology. J Cryst Growth 217:274–280

    Article  CAS  Google Scholar 

  36. Wang X, Shi J, Dai S, Yang Y (2003) A sol-gel method to prepare pure and gold colloid doped ZnO films. Thin Solid Films 429:102–107

    Article  CAS  Google Scholar 

  37. Guo L, Ji Y, Xu H, Wu Z, Simon P (2003) Synthesis and evolution of rod-like nano-scaled ZnC2O4.2H2O whiskers to ZnO nanoparticles. J Mater Chem 13:754–757

    Article  CAS  Google Scholar 

  38. Marinkovic ZV, Mancic L, Milosevic O (2004) The nature of structural changes in nanocrystalline ZnO powders under linear heating conditions. J Eur Ceram Soc 24:1929–1933

    Article  CAS  Google Scholar 

  39. Sokolov PS, Baranov AN, Dobrokhotova ZV, Solozhenkoa VL (2010) Synthesis and thermal stability of cubic ZnO in the salt nanocomposites. Russ Chem Bull 59:325–328

    Article  CAS  Google Scholar 

  40. Ramamoorthy RK, Bhatnagar AK (2015) Effect of ZnO and PbO/ZnO on structural and thermal properties of tellurite glasses. J Alloy Comp 623:49–54

    Article  CAS  Google Scholar 

  41. Gerbreders V, Sarajevs P, Mihailova I, Tamanis E (2015) The kinetics study of the hydrothermal growth of ZnO nanorod array films. Latvian J Phys Tech Sci 5:20–27

    Article  Google Scholar 

  42. Gao Y, Wang W, Zheng F, Liu X (1986) On the crystallization kinetics of Pd80B4Si16 glass. J Non-Cryst Solids 81:135–139

    Article  CAS  Google Scholar 

  43. Vazquez J, Lopez-Alemany PL, Villares P, Jimenez-Garay R (1998) A study on glass transition and crystallization kinetics in Sb0.12As0.36Se0.52 glassy alloy by using non-isothermal techniques. Mater Chem Phys 57:162–168

    Article  CAS  Google Scholar 

  44. Joraid AA (2007) Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9.1Te20.1Se70.8 alloy. Thermochim Acta 456:1–6

    Article  CAS  Google Scholar 

  45. Farjas J, Roura P (2011) Isoconversional analysis of solid-state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim 105:757–766

    Article  CAS  Google Scholar 

  46. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) Review, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  47. Joraid AA, Okasha RM, Al‑Maghrabi MA, Afifi TH, Agatemor C, Abd‑El‑Aziz AS (2020) Thermal degradation behavior of a new family of organometallic dendrimer. J Inorg Organomet Polym Mater 30:2937–2951

    Article  CAS  Google Scholar 

  48. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C 6:183–195

    Article  Google Scholar 

  49. Ozawa TA (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  50. Flynn JH, Wall LA (1966) Thermal analysis of polymer by thermogravemetric analysis. J Res Natl Bur Stand Sect A 70:487–523

    Article  CAS  Google Scholar 

  51. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–221

    Article  CAS  Google Scholar 

  52. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1076

    Article  CAS  Google Scholar 

  53. Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electric insulating materials. Res Rep Chiba Inst 16:22–31

    Google Scholar 

  54. Vyazovkin S (1997) Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 18:393–402

    Article  CAS  Google Scholar 

  55. Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183

    Article  CAS  Google Scholar 

  56. Vyazovkin S, Dranca I (2006) Isoconversional analysis of combined melt and glass crystallization data. Macromol Chem Phys 207:20–25

    Article  CAS  Google Scholar 

  57. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73

    Article  CAS  Google Scholar 

  58. Roduit B (2002) Prediction of the progress of solid-state reactions under different temperature modes. Thermochim Acta 388:377–387

    Article  CAS  Google Scholar 

  59. Burnham AK, Dinh LN (2007) A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application prediction. J Therm Anal. Cal 89:479–490

    CAS  Google Scholar 

  60. Roduit B, Hartmann M, Folly P, Sarbach A, Baltensperger R (2014) Prediction of thermal stability of materials by modified kineticand model selection approaches based on limited amountof experimental points. Thermochim Acta 579:31–39

    Article  CAS  Google Scholar 

  61. Roduit B, Hartmann M, Folly P, Sarbach A, Dejeaifve A, Dobson R, Kurko K (2018) Kinetic analysis of solids of the quasi-autocatalytic decomposition type: SADT determination of low-temperature polymorph of AIBN. Thermochim Acta 665:119–126

    Article  CAS  Google Scholar 

  62. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Met) Engs 135:416–458

    Google Scholar 

  63. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  64. Avrami M (1940) Kinetics of phase change. II transformation time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  65. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  66. Blazquez JS, Conde CF, Conde A (2005) Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys. Acta Mater 53:2305–2311

    Article  CAS  Google Scholar 

  67. Blazquez JS, Conde CF, Conde A, Kulik T (2007) A direct extension of the Avrami equation to describe the non-isothermal crystallization of Al-base alloys. J Alloy Comp 434-435:187–189

    Article  CAS  Google Scholar 

  68. Ramasamy P, Stoica M, Taghvaei AH, Prashanth KG, Kumar R, Eckert J (2016) Kinetic analysis of the non-isothermal crystallization process, magnetic and mechanical properties of FeCoBSiNb and FeCoBSiNbCu bulk metallic glasses. J Appl Phys 119:073908

    Article  Google Scholar 

  69. Rahvard MM, Tamizifar M, Boutorabi SM (2018) Non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 and Zr56Co22Cu6Al16 bulk metallic glasses. J Therm Anal Cal 134:903–914

    Article  Google Scholar 

  70. Jiang SS, Zhu L, Zheng H, Wang YG (2020) Kinetics of non-isothermal crystallization in FeNiPC(Nb) alloys. Thermochim Acta 684:178481

    Article  CAS  Google Scholar 

  71. Alamri SN, Joraid AA, Al-Raqa SY (2006) Structural and optical properties of thermally evaporated 1,4,8,11,15,18,22,25-octahexylphthalocyanine thin films. Thin Solid Films 510:265–270

    Article  CAS  Google Scholar 

  72. Joraid AA, Alamri SN (2007) Effect of annealing on structural and optical properties of WO3 thin films prepared by electron-beam coating. Phys B 391:199–205

    Article  CAS  Google Scholar 

  73. Benkahoul M, Zayed MK, Solieman A, Alamri SN (2017) Spray deposition of V4O9 and V2O5 thin films and post-annealing formation of thermochromic VO2. J Alloy Comp 704:760–768

    Article  CAS  Google Scholar 

  74. Wang C, Shen E, Wang E, Gao L, Kang Z, Tian C, Lan Y, Zhang C (2005) Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature. Mater Lett 59:2867–2871

    Article  CAS  Google Scholar 

  75. Chandrappa KG, Venkatesha TV (2012) Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles. Nano-Micro Lett 4:14–24

    Article  CAS  Google Scholar 

  76. Ghosh R, Kundu S, Majumder R, Chowdhury MP (2020) Hydrothermal synthesis and characterization of multifunctional ZnO nanomaterials. Mater Today-Proc 26:77–81

    Article  CAS  Google Scholar 

  77. Joraid AA (2007) Optical investigation of the thermal annealing dependence of selenium films. Materials Science an Indian. Journal 3:82–88

    CAS  Google Scholar 

  78. Almeida WL, Ferreira NS, Rodembusch FS, Sousa VC (2021) Study of structural and optical properties of ZnO nanoparticles synthesized by an eco-friendly tapioca-assisted route. Mater Chem Phys 258:123926

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Joraid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joraid, A.A., Solieman, A.S., Al‑Maghrabi, M.A. et al. Studies of crystallization kinetics and optical properties of ZnO films prepared by sol–gel technique. J Sol-Gel Sci Technol 97, 523–539 (2021). https://doi.org/10.1007/s10971-020-05467-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05467-w

Navigation