Skip to main content
Log in

Facile synthesis of self-assembling silver spheres and evaluation of their catalytic properties in organic dyes degradation

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hierarchical self-assembly nanostructures have an important interest in nanoscience and nanotechnology. This research reports a facile method for self-assembly of silver spheres using the Hamelia patens plant extract as a reducing agent. Furthermore, the degradation of organic dyes assesses the catalytic properties of Ag nanostructures. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–Vis, and Fourier transform infrared techniques characterized the Ag spheres’ morphology and structure. SEM and TEM images revealed porous Ag assemblies with spherical morphologies of an average size of ~2 µm integrated by 20 nm thick petals. Also, more compact Ag spheres with an average size of around 3 µm, containing nanorods of around 100 nm on their surface, were obtained. Energy dispersive spectrometer and XRD techniques determined the chemical composition and crystal structure of the spheres. UV–Vis spectra show bands ranging from 400 to 500 nm, confirming quantum confinement in the material. Silver spheres with petals showed the best degradation performance of organic dyes such as methylene blue, methyl orange, and rhodamine B.

Highlights

  • Ecological synthesis for the self-assembly of silver spheres.

  • Analytical techniques revealed spherical morphologies assembled by both nanosheets and nanorods.

  • The spheres assembled by nanosheets have a porous structure, while assembled by nanorods are compact.

  • Porous silver spheres show excellent catalytic activity in the degradation of organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data analyzed during this study are included in the article.

References

  1. Bisoyi HK, Kumar S (2011) Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev 40(1):306–319

    Article  CAS  Google Scholar 

  2. Schwarz JA, Contescu CI, Putyera K (2004) Dekker encyclopedia of nanoscience and nanotechnology, vol 5. CRC press, New York

  3. Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A (2018) Nanomaterials history, classification, unique properties, production and market. In: Emerging applications of nanoparticles and architecture nanostructures. Elsevier, Amsterdam, pp 341–384

  4. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. World scientific, Singapore

  5. Parak WJ, Manna L, Nann T (2010) Fundamental principles of quantum dots. Nanotechnology 1:73–96

    Google Scholar 

  6. García M, Aloisio C, Onnainty R, Ullio-Gamboa G (2018) Self-assembled nanomaterials. In: Nanobiomaterials. Elsevier, Amsterdam, pp 41–94

  7. Pokropivny V, Skorokhod V (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27(5–8):990–993

    Article  CAS  Google Scholar 

  8. Leite ER (2004) Nanocrystals assembled from the bottom up. In: Encyclopedia of nanoscience and nanotechnology. Stevenson Ranch, CA, pp 537–554

  9. Percebom AM, Towesend VJ, de Andrade MdPS, Gramatges AP (2018) Sustainable self-assembly strategies for emerging nanomaterials. Curr Opin Green Sustain Chem 12:8–14

    Article  Google Scholar 

  10. Fang Y, Phillips BM, Askar K, Choi B, Jiang P, Jiang B (2013) Scalable bottom-up fabrication of colloidal photonic crystals and periodic plasmonic nanostructures. J Mater Chem C 1(38):6031–6047

    Article  CAS  Google Scholar 

  11. Pucci A, Willinger M-G, Liu F, Zeng X, Rebuttini V, Clavel G, Bai X, Ungar G, Pinna N (2012) One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices. ACS Nano 6(5):4382–4391. https://doi.org/10.1021/nn3010735

    Article  CAS  Google Scholar 

  12. Jiang X, Yu A (2010) One-step approach for the synthesis and self-assembly of silver nanoparticles. J Nanosci Nanotechnol 10(11):7643–7647

    Article  CAS  Google Scholar 

  13. Garrett TM, Koert U, Lehn J-M, Rigault A, Meyer D, Fischer J (1990) Self-assembly of silver (I) helicates. J Chem Soc, Chem Commun 7(7):557–558

    Article  Google Scholar 

  14. Suchanuch S, Rhushabh M, Sam D, Scott D, Zhaoxia Z, Mark P (2019) Droplet factories: synthesis and assembly of silver and palladium nanoparticles at the liquid-liquid interface. https://doi.org/10.26434/chemrxiv.10288556.v1

  15. Ouhenia-Ouadahi K, Andrieux-Ledier A, Richardi J, Albouy P-A, Beaunier P, Sutter P, Sutter E, Courty A (2016) Tuning the growth mode of 3D silver nanocrystal superlattices by triphenylphosphine. Chem Mater 28(12):4380–4389. https://doi.org/10.1021/acs.chemmater.6b01374

    Article  CAS  Google Scholar 

  16. Wei W, Bai F, Fan H (2019) Surfactant-assisted cooperative self-assembly of nanoparticles into active nanostructures. iScience 11:272–293. https://doi.org/10.1016/j.isci.2018.12.025

    Article  CAS  Google Scholar 

  17. Fulong CRP, Kim S, Friedman AE, Cook TR (2019) Coordination-driven self-assembly of silver(I) and gold(I) rings: synthesis, characterization, and photophysical studies. Front Chem 7(567). https://doi.org/10.3389/fchem.2019.00567

  18. Serrano-Montes AB, Jimenez de Aberasturi D, Langer J, Giner-Casares JJ, Scarabelli L, Herrero A, Liz-Marzán LM (2015) A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers. Langmuir 31(33):9205–9213. https://doi.org/10.1021/acs.langmuir.5b01838

    Article  CAS  Google Scholar 

  19. Li Y, Duan W, Lu X, Yang S, Wen X (2019) Synthesis of strawberry-like Fe3O4@SiO2@Ag composite colloidal particles for constructing responsive photonic crystals. Optical Mater 94:423–429. https://doi.org/10.1016/j.optmat.2019.06.002

    Article  CAS  Google Scholar 

  20. Moghimi-Rad J, Isfahani TD, Hadi I, Ghalamdaran S, Sabbaghzadeh J, Sharif M (2011) Shape-controlled synthesis of silver particles by surfactant self-assembly under ultrasound radiation. Appl Nanosci 1(1):27–35. https://doi.org/10.1007/s13204-011-0004-5

    Article  CAS  Google Scholar 

  21. Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev 2:10.3402/nano.v2i0.5883. https://doi.org/10.3402/nano.v2i0.5883

  22. Garcia AM, Iglesias D, Parisi E, Styan KE, Waddington LJ, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu AV (2018) Chirality effects on peptide self-assembly unraveled from molecules to materials. Chem 4(8):1862–1876

    Article  CAS  Google Scholar 

  23. Sun H, Luo Q, Hou C, Liu J (2017) Nanostructures based on protein self-assembly: from hierarchical construction to bioinspired materials. Nano Today 14:16–41

    Article  CAS  Google Scholar 

  24. Clerici F, Erba E, Gelmi ML, Pellegrino S (2016) Non-standard amino acids and peptides: from self-assembly to nanomaterials. Tetrahedron Lett 57(50):5540–5550

    Article  CAS  Google Scholar 

  25. Suvith V, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 118:526–532

    Article  CAS  Google Scholar 

  26. Khan MA, Khan T, Nadhman A (2016) Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Colloid Interface Sci 234:132–141

    Article  Google Scholar 

  27. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339(1–3):134–139

    Article  CAS  Google Scholar 

  28. Rao KJ, Paria S (2013) Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater Res Bull 48(2):628–634

    Article  Google Scholar 

  29. Chandra H, Kumari P, Bontempi E, Yadav S (2020) Medicinal plants: treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol 24:101518

    Article  Google Scholar 

  30. Agharkar M, Kochrekar S, Hidouri S, Azeez MA (2014) Trends in green reduction of graphene oxides, issues and challenges: a review. Mater Res Bull 59:323–328

    Article  CAS  Google Scholar 

  31. Akhtar MS, Panwar J, Yun Y-S (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1(6):591–602

    Article  CAS  Google Scholar 

  32. Rajeshkumar S, Bharath L (2017) Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact 273:219–227

    Article  CAS  Google Scholar 

  33. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol Gel Sci Technol 86(3):682–689. https://doi.org/10.1007/s10971-018-4666-2

    Article  CAS  Google Scholar 

  34. Kohsari I, Mohammad-Zadeh M, Minaeian S, Rezaee M, Barzegari A, Shariatinia Z, Koudehi MF, Mirsadeghi S, Pourmortazavi SM (2019) In vitro antibacterial property assessment of silver nanoparticles synthesized by Falcaria vulgaris aqueous extract against MDR bacteria. J Sol Gel Sci Technol 90(2):380–389. https://doi.org/10.1007/s10971-019-04961-0

    Article  CAS  Google Scholar 

  35. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9(8):852–858. https://doi.org/10.1039/B615357G

    Article  CAS  Google Scholar 

  36. Okitsu K, Mizukoshi Y (2016) Catalytic applications of noble metal nanoparticles produced by sonochemical reduction of noble metal ions. In: Handbook of Ultrasonics and Sonochemistry. Springer Singapore, Singapore, pp 325–363. https://doi.org/10.1007/978-981-287-278-4_13

  37. Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109(5):1730–1735. https://doi.org/10.1021/jp046032g

    Article  CAS  Google Scholar 

  38. Vidhu VK, Philip D (2014) Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectrochim Acta A Mol Biomol Spectrosc 117:102–108. https://doi.org/10.1016/j.saa.2013.08.015

    Article  CAS  Google Scholar 

  39. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5(39):30801–30818

    Article  CAS  Google Scholar 

  40. Bag BG, Dash SS (2015) Hierarchical self-assembly of a renewable nanosized pentacyclic dihydroxy-triterpenoid betulin yielding flower-like architectures. Langmuir 31(51):13664–13672. https://doi.org/10.1021/acs.langmuir.5b03730

    Article  CAS  Google Scholar 

  41. Cheng S, Oatley DL, Williams PM, Wright CJ (2012) Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Res 46(1):33–42. https://doi.org/10.1016/j.watres.2011.10.011

    Article  CAS  Google Scholar 

  42. Haque E, Jun JW, Jhung SH (2011) Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater 185(1):507–511. https://doi.org/10.1016/j.jhazmat.2010.09.035

    Article  CAS  Google Scholar 

  43. Jain R, Mathur M, Sikarwar S, Mittal A (2007) Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J Environ Manag 85(4):956–964. https://doi.org/10.1016/j.jenvman.2006.11.002

    Article  CAS  Google Scholar 

  44. Ji L, Liu X, Xu T, Gong M, Zhou S (2020) Preparation and photocatalytic properties of carbon/carbon-doped TiO2 double-layer hollow microspheres. J Sol Gel Sci Technol 93(2):380–390. https://doi.org/10.1007/s10971-019-05176-z

    Article  CAS  Google Scholar 

  45. Jia J, Wang Y, Xu M, Qi M-l, Wu Y, Zhao G (2020) MOF-derived the direct Z-scheme g-C3N4/TiO2 with enhanced visible photocatalytic activity. J Sol Gel Sci Technol 93(1):123–130. https://doi.org/10.1007/s10971-019-05172-3

    Article  CAS  Google Scholar 

  46. da Silva RA, Jacinto MJ, Silva VC, Cabana DC (2018) Urea-assisted fabrication of Fe3O4@ZnO@Au composites for the catalytic photodegradation of Rhodamine-B. J Sol Gel Sci Technol 86(1):94–103. https://doi.org/10.1007/s10971-018-4607-0

    Article  CAS  Google Scholar 

  47. Sutanto N, Saharudin KA, Sreekantan S, Kumaravel V, Md Akil H (2020) Heterojunction catalysts g-C3N4/-3ZnO-c-Zn2Ti3O8 with highly enhanced visible-light-driven photocatalytic activity. J Sol Gel Sci Technol 93(2):354–370. https://doi.org/10.1007/s10971-019-05101-4

    Article  CAS  Google Scholar 

  48. Kang L, Xu P, Chen D, Zhang B, Du Y, Han X, Li Q, Wang H-L (2013) Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. J Phys Chem C 117(19):10007–10012

    Article  CAS  Google Scholar 

  49. Yang D-P, Chen S, Huang P, Wang X, Jiang W, Pandoli O, Cui D (2010) Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem 12(11):2038–2042

    Article  CAS  Google Scholar 

  50. Hong L, Li Q, Lin H, Li Y (2009) Synthesis of flower-like silver nanoarchitectures at room temperature. Mater Res Bull 44(6):1201–1204

    Article  CAS  Google Scholar 

  51. Li X, Li M, Cui P, Zhao X, Gu T, Yu H, Jiang Y, Song D (2014) Electrodeposition of Ag nanosheet-assembled microsphere@ Ag dendrite core–shell hierarchical architectures and their application in SERS. CrystEngComm 16(19):3834–3838

    Article  CAS  Google Scholar 

  52. Liu C, Xu X, Hu W, Yang X, Zhou P, Qiu G, Ye W, Li Y, Jiang C (2018) Synthesis of clean cabbagelike (111) faceted silver crystals for efficient surface-enhanced raman scattering sensing of papaverine. Anal Chem 90(16):9805–9812. https://doi.org/10.1021/acs.analchem.8b01735

    Article  CAS  Google Scholar 

  53. Smitha S, Nissamudeen K, Philip D, Gopchandran K (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 71(1):186–190

    Article  CAS  Google Scholar 

  54. Xia T, Zhang Y, Murowchick J, Chen X (2014) Vacuum-treated titanium dioxide nanocrystals: optical properties, surface disorder, oxygen vacancy, and photocatalytic activities. Catal Today 225:2–9. https://doi.org/10.1016/j.cattod.2013.08.026

    Article  CAS  Google Scholar 

  55. Zhou M, Hou Z, Chen X (2018) The effects of hydrogenation on graphitic C3N4 nanosheets for enhanced photocatalytic activity. Part Part Syst Charact 35(1):1700038. https://doi.org/10.1002/ppsc.201700038

    Article  CAS  Google Scholar 

  56. Sherin L, Sohail A, Amjad U-e-S, Mustafa M, Jabeen R, Ul-Hamid A (2020) Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloid Interface Sci Commun 37:100276. https://doi.org/10.1016/j.colcom.2020.100276

    Article  CAS  Google Scholar 

  57. Fang L, Zhang X, Xiang J, Zhao M, Zheng B, Bai L (2020) Solvent polarity resulted in different structures and photocatalytic abilities of Ag/ZnO composites. J Sol Gel Sci Technol 93(3):695–702. https://doi.org/10.1007/s10971-019-05181-2

    Article  CAS  Google Scholar 

  58. Hu M, Yan X, Hu X, Feng R, Zhou M (2019) Synthesis of silver decorated silica nanoparticles with rough surfaces as adsorbent and catalyst for methylene blue removal. J Sol Gel Sci Technol 89(3):754–763. https://doi.org/10.1007/s10971-018-4871-z

    Article  CAS  Google Scholar 

  59. Capeli RA, Belmonte T, Caierão J et al (2020) Effect of hydrothermal temperature on the antibacterial and photocatalytic activity of WO3 decorated with silver nanoparticles. J Sol Gel Sci Technol. https://doi.org/10.1007/s10971-020-05433-6

  60. Ahmed J, Alhokbany N, Husain A, Ahmad T, Khan MAM, Alshehri SM (2020) Synthesis, characterization, and significant photochemical performances of delafossite AgFeO2 nanoparticles. J Sol Gel Sci Technol 94(2):493–503. https://doi.org/10.1007/s10971-020-05274-3

    Article  CAS  Google Scholar 

  61. Gorgani M, Kaleji BK (2020) Structural, photocatalytic and surface analysis of Nb/Ag codoped TiO2 mesoporous nanoparticles. J Sol Gel Sci Technol 96(3):728–741. https://doi.org/10.1007/s10971-020-05403-y

    Article  CAS  Google Scholar 

  62. Marimuthu S, Antonisamy AJ, Malayandi S, Rajendran K, Tsai P-C, Pugazhendhi A, Ponnusamy VK (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol B Biol 205:111823

    Article  CAS  Google Scholar 

  63. Chen Q, Wu Q (2015) Preparation of carbon microspheres decorated with silver nanoparticles and their ability to remove dyes from aqueous solution. J Hazard Mater 283:193–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KC is pleased to acknowledge the financial support by Consejo Nacional de Ciencia y Tecnología (CONACYT).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. KC performed the methodology, analysis, and investigation. GR checked the supervision, writing, review, and editing. All authors read and approved the final paper.

Corresponding author

Correspondence to G. Rosas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez, K., Rosas, G. Facile synthesis of self-assembling silver spheres and evaluation of their catalytic properties in organic dyes degradation. J Sol-Gel Sci Technol 97, 320–328 (2021). https://doi.org/10.1007/s10971-020-05463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05463-0

Keywords

Navigation