Skip to main content
Log in

Facile preparation of flexible polyacrylonitrile/BiOCl/BiOI nanofibers via SILAR method for effective floating photocatalysis

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Flexible and floating photocatalysts have unique advantages in water pollution treatment due to their light-harvesting and recycle performance. Here, a facile successive ionic layer adsorption and reaction (SILAR) method was used to layer by layer grow BiOCl/BiOI heterojunctions on self-supporting electrospun polyacrylonitrile (PAN) nanofiber mats at room temperature. This method enables tunable good interface contact of the heterojunctions while makes the composites maintain flexibility and floatable properties. The PAN/BiOCl/BiOI nanofibers show much better photocatalytic activity than the PAN/BiOCl and PAN/BiOI nanofibers. For removal of Rhodamine-B and Bisphenol-A, the degradation rates of PAN/BiOCl/BiOI nanofibers were about 1.68 and 1.41 times higher than PAN/BiOCl nanofibers and were 2.27 and 2.01 times higher than PAN/BiOI nanofibers, respectively. The high photocatalytic performance could be attributed to the effective interfacial charge separation of BiOCl/BiOI heterojunctions, confirmed by the enhanced photocurrent densities, and significantly decreased photoluminescence intensity. The photocatalytic activity of these composite nanofibers could be further improved by adjusting the contents of BiOCl and BiOI in the heterojunction due to the excellent controllability of the SILAR method. Furthermore, the PAN/BiOCl/BiOI nanofibers can float easily and directly reused due to their flexible and self-supporting fiber mats structures. It was expected that the PAN/BiOCl/BiOI nanofibers with high photocatalytic activity and easily separable properties would be useful for industrial wastewater remediation.

Highlights

  • BiOI/BiOCl heterojunctions were evenly grown on PAN nanofibers at room temperature.

  • The nanofibers show high degradation rates for Rhodamine-B and Bisphenol-A.

  • They can be used for floating photocatalysis due to the flexible and self-supporting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schultz DM, Yoon TP (2014) Solar synthesis: prospects in visible light photocatalysis. Science 80:343

    Google Scholar 

  2. Wan Z, Zhang G, Wu X, Yin S (2017) Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction. Appl Catal B Environ 207:17–26

    Article  CAS  Google Scholar 

  3. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  4. Song J, Wang X, Ma J, Wang X, Wang J, Xia S et al. (2018) Removal of microcystis aeruginosa and microcystin-LR using a graphitic-C3N4/TiO2 floating photocatalyst under visible light irradiation. Chem Eng J 348:380–8

    Article  CAS  Google Scholar 

  5. Długosz M, Waś J, Szczubiałka K, Nowakowska M (2014) TiO2-coated EP as a floating photocatalyst for water purification. J Mater Chem A 2:6931–8

    Article  Google Scholar 

  6. Xing Z, Zhang J, Cui J, Yin J, Zhao T, Kuang J et al. (2018) Recent advances in floating TiO2-based photocatalysts for environmental application. Appl Catal B Environ 225:452–67

    Article  CAS  Google Scholar 

  7. Li H, Shen L, Zhang K, Sun B, Ren L, Qiao P et al. (2018) Surface plasmon resonance-enhanced solar-driven photocatalytic performance from Ag nanoparticle-decorated self-floating porous black TiO2 foams. Appl Catal B Environ 220:111–7

    Article  CAS  Google Scholar 

  8. Zhang K, Zhou W, Zhang X, Sun B, Wang L, Pan K et al. (2017) Applied catalysis B: environmental self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts. Appl Catal B Environ 206:336–43

    Article  CAS  Google Scholar 

  9. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–26

    Article  CAS  Google Scholar 

  10. Huang Y, Li H, Balogun MS, Liu W, Tong Y, Lu X et al. (2014) Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance. ACS Appl Mater Interfaces 6:22920–7

    Article  CAS  Google Scholar 

  11. Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in BiOX (X= Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci Nano 1:90–112

    Article  CAS  Google Scholar 

  12. Esmaeili AR, Mir N, Mohammadi R (2020) A facile, fast and low method for fabrication of micro/nano-textured superhydrophobic surfaces. J Colloid Interface Sci 573:317–27

    Article  CAS  Google Scholar 

  13. Jamali M, Moghadam A, VahediTafreshi H, Pourdeyhimi B (2018) Droplet adhesion to hydrophobic fibrous surfaces. Appl Surf Sci 456:626–36

    Article  CAS  Google Scholar 

  14. Guo XH, Zhou XJ, Li XH, Shao CL, Han CH, Li XW et al. (2018) Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis. J Colloid Interface Sci 525:187–95

    Article  CAS  Google Scholar 

  15. Zhou XJ, Shao CL, Yang S, Li XH, Guo XH, Wang XX et al. (2018) Heterojunction of g-C3N4/BiOI immobilized on flexible electrospun polyacrylonitrile nanofibers: facile preparation and enhanced visible photocatalytic activity for floating photocatalysis. ACS Sustain Chem Eng 6:2316–23

    Article  CAS  Google Scholar 

  16. Jiang J, Zhang X, Sun P, Zhang L (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J Phys Chem C 115:20555–64

    Article  CAS  Google Scholar 

  17. Chang X, Yu G, Huang J, Li Z, Zhu S, Yu P et al. (2010) Visible-light-induced photocatalytic decomposition of Rhodamine B dye over NaBiO3/BiOCl composite prepared by an in situ formation strategy. Catal Today 153:193–9

    Article  CAS  Google Scholar 

  18. Liu Y, Zhu G, Gao J, Hojamberdiev M, Zhu R, Wei X et al. (2017) Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3+-doping and the addition of Au nanoparticles: photodegradation of phenol and bisphenol A. Appl Catal B Environ 200:72–82

    Article  CAS  Google Scholar 

  19. Cheng H, Huang B, Dai Y, Qin X, Zhang X (2010) One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26:6618–24

    Article  CAS  Google Scholar 

  20. Zhang J, Xia J, Yin S, Li H, Xu H, He M et al. (2013) Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids. Colloids Surf A: Physicochem Eng Asp 420:89–95

    Article  CAS  Google Scholar 

  21. Huang KJ, Liu HG, Yuan FL, Xie CS (2012) Preparation, characterization and visible-light photocatalytic properties of BiOCl/BiOI nanocomposites. Adv Mater Res 5:8610–7

    Google Scholar 

  22. Dong F, Sun Y, Fu M, Wu Z, Lee SC (2012) Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J Hazard Mater 219-20:26–34

    Article  Google Scholar 

  23. Cao J, Xu B, Lin H, Luo B, Chen S (2012) Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chen Chem Eng J 185–186:91–99

    Google Scholar 

  24. Cao J, Xu B, Luo B, Lin H, Chen S (2011) Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal Commun 13:63–68

    Article  CAS  Google Scholar 

  25. Sun LM, Li X, Zhao X, Jia CJ, Yang J, Jin Z et al. (2015) Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catal 5:3540–3551

    Article  CAS  Google Scholar 

  26. Yu X, Yang JJ, Ye KH, Fu XH, Zhu Y, Zhang XM (2016) Facile one-step synthesis of BiOCl/BiOI heterojunctions with exposed {001} facet for highly enhanced visible light photocatalytic performances. Inorg Chem Commun 71:45–49

    Article  CAS  Google Scholar 

  27. Zhong YX, Liu YH, Wu S, Zhu Y, Chen HB, Yu X et al. (2018) Facile fabrication of BiOI/BiOCl immobilized films with improved visible light photocatalytic performance. Front Chem 6:58

    Article  Google Scholar 

  28. Wang KX, Shao CL, Li XH, Miao FJ, Lu N, Liu YC (2016) Room temperature immobilized BiOI nanosheets on flexible electrospun polyacrylonitrile nanofibers with high visible-light photocatalytic activity. J Sol-Gel Sci Technol 80:783–92

    Article  CAS  Google Scholar 

  29. Su X, Yang J, Yu X, Zhu Y, Zhang Y (2018) In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B. Appl Surf Sci 433:502–12

    Article  CAS  Google Scholar 

  30. Zhong Y, Liu Y, Wu S, Zhu Y, Chen H, Yu X et al. (2018) Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures. Front Chem 6:1–11

    Google Scholar 

  31. Lei Y, Wang G, Song S, Fan W, Zhang H (2009) Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. CrystEngComm 11:1857–62

    Article  CAS  Google Scholar 

  32. Yu Y, Cao C, Liu H, Li P, Wei F, Jiang Y, Song W (2014) A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. J Mater Chem A 2:1677–81

    Article  CAS  Google Scholar 

  33. Chen L, Yin SF, Luo SL, Huang R, Zhang Q, Hong T et al. (2012) Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind Eng Chem Res 51:6760–8

    Article  CAS  Google Scholar 

  34. Wang X, Bi W, Zhai P, Wang X, Li H, Mailhot G et al. (2016) Adsorption and photocatalytic degradation of pharmaceuticals by BiOClxIy nanospheres in aqueous solution. Appl Surf Sci 360:240–51

    Article  CAS  Google Scholar 

  35. Xiao X, Hao R, Liang M, Zuo X, Nan J, Li L et al. (2012) One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J Hazard Mater 233–234:122–30

    Article  Google Scholar 

  36. Davies JED (1973) Solid state vibrational spectroscopy—III [1] The infrared and raman spectra of the bismuth (III) oxide halides. J Inorg Nucl Chem 35:1531–4

    Article  CAS  Google Scholar 

  37. Lu MX, Shao CL, Wang KX, Lu N, Zhang X, Zhang P et al. (2014) p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. ACS Appl Mater Interfaces 6:9004–12

    Article  CAS  Google Scholar 

  38. Butler MA, Ginley DS, Eibschutz M (1977) Photoelectrolysis with YFeO3 electrodes. J Appl Phys 48:3070–2

    Article  CAS  Google Scholar 

  39. Liu HH, Yang C, Huang J, Chen Z, Li JZ (2020) Ionic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance. Inorg Chem Commun 113:107806

    Article  CAS  Google Scholar 

  40. Lee MS, Park SS, Lee GD, Ju CS, Hong SS (2005) Synthesis of TiO2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity. Catal Today 101:283–90

    Article  CAS  Google Scholar 

  41. Lu MX, Shao CL, Wang KX, Lu N, Zhang X, Zhang P et al. (2014) p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. ACS Appl Mater Interfaces 6:9004–12

    Article  CAS  Google Scholar 

  42. Nguyen DCT, Cho KY, Oh WC (2017) Synthesis of frost-like CuO combined graphene-TiO2 by self-assembly method and its high photocatalytic performance. Appl Surf Sci 412:252–61

    Article  CAS  Google Scholar 

  43. Hu ZT, Da OhW, Liu Y, Yang EH, Lim TT (2018) Controllable mullite bismuth ferrite micro/nanostructures with multifarious catalytic activities for switchable/hybrid catalytic degradation processes. J Colloid Interface Sci 509:502–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Dr. Hancheng Zhu for supporting the characterization of samples. This work was financially supported by the National Natural Science Foundation of China (Nos. 52072064, 51972051, 61803080, 51732003), the 111 Project (No. B13013).

Supporting information

The SEM images of PAN nanofibers and BiOCl/BiOI nanoparticles, SEM images, EDX spectra, and XRD of PAN/BiOCl/BiOI15, PAN/BiOCl/BiOI20, and PAN/BiOCl/BiOI25 nanofibers, and nitrogen sorption isotherms, and UV–vis diffuse reflectance spectra of PAN/BiOCl, PAN/BiOI and PAN/BiOCl/BiOI nanofibers, degradation of RhB in the presence of scavengers,

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changlu Shao or Xinghua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhang, L., Shao, C. et al. Facile preparation of flexible polyacrylonitrile/BiOCl/BiOI nanofibers via SILAR method for effective floating photocatalysis. J Sol-Gel Sci Technol 97, 610–621 (2021). https://doi.org/10.1007/s10971-020-05453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05453-2

Keywords

Navigation