Skip to main content
Log in

Reactivity of silanol group on siloxane oligomers for designing molecular structure and surface wettability

  • Original Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Molecular structures of siloxane materials should be highly controlled for achieving advanced functionalities. However, it is still difficult to precisely control the structure of siloxane materials by the sol–gel processing. In the present study, we focused on the silanol groups in the intermediate oligomers and resultant siloxane materials as a key structural unit for controlling the molecular structure. Thermal stability and chemical reactivity of silanol groups were found to be highly dependent on the steric effects of the surrounding side chains and siloxane skeletons. The present work suggests that controlling the steric effects around silanol groups in the intermediate oligomers allows modulating the crosslink density of siloxane skeletons. The selective molecular modification tunes the structure and chemical properties of the resultant siloxane materials.

Highlights

  • Hydroxyl groups in oraganically modified siloxane oligomers exhibit a diffrent reactivity depending on the local environments.

  • Molecular structures of siloxane materials should be highly controlled for achieving advanced functionalities.

  • The selective molecular modification tunes the structure and chemical properties of the resultant siloxane materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim JS, Yang S, Bae BS (2010) Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation. Chem Mater 22:3549–3555

    Article  CAS  Google Scholar 

  2. Mosley DW, Khan arian G, Conner DM, Thorsen DL, Zhang T, Wills M (2013) High refractive index thermally stable phenoxyphenyl and phenylthiophenyl silicones for light-emitting diode applications. J Appl Polym Sci 131(3):39824

    Google Scholar 

  3. Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753

    Article  CAS  Google Scholar 

  4. O’Shaughnessy WS, Edell DJ, Gleason KK (2009) Initiated chemical vapor deposition of a siloxane coating for insulation of neural probes. Thin Solid Films 517(12):3612–3614

    Article  Google Scholar 

  5. Zhang C, Qu L, Wang Y, Xu T, Zhang C (2018) Thermal insulation and stability of polysiloxane foams containing hydroxyl-terminated polydimethylsiloxanes. RSC Adv 8:9901–9909

    Article  CAS  Google Scholar 

  6. Gertz C, Klostermann S, Kochhar SP (2003) Deep frying: the role of water from food being fried and acrylamide formation. OCL 10:297–303

    Article  CAS  Google Scholar 

  7. Kabir A, Furton K, Malil A (2013) Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. Trends Analyt Chem 45:197–218

    Article  CAS  Google Scholar 

  8. Kitamura N, Fukumi K, Nishi J, Ohno N (2009) Effect of hydroxyl impurity on temperature coefficient of refractive index of synthetic silica glasses. J Non-Crystalline Solid 355:2216–2219

    Article  CAS  Google Scholar 

  9. Kuroda M, Tachibana S, Sakamoto N, Okumura S, Nakamura M, Yurimoto H (2018) Water diffusion in silica glass through pathways formed by hydroxyls. Am. Mineral. 103:412–417

    Article  Google Scholar 

  10. Kajihara K, Hirano M, Skuja L, Hosono H (2006) Modification of vacuum-ultraviolet absorption of SiOH groups in SiO2 glass with temperature, F2 laser irradiation, and H-D isotope exchange. J. Non-Crystalline Solid. 352:23–25

    Google Scholar 

  11. Jal P,K, Patel S, Mishra BK (2004) Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 62:1005–1028

    Article  CAS  Google Scholar 

  12. Ju H, Lee D-H, Cho H-C, Kim K-S, Yoon S, Seo S-Y (2014) Application of hydrophilic silanol-based chemical grout for strengthening damaged reinforced concrete flexural members. Materials. 7(6):4823–4844

    Article  Google Scholar 

  13. Valkenberg MH, deCastro C, Holderich WF (2002) Immobilisation of ionic liquids on solid supports. Green Chem 4:88–93

    Article  CAS  Google Scholar 

  14. Ide M, El-Roz M, De Canck E, Vicente A, Planckaert T, Bogaerts T, Van Driessche I, Lynen F, Van Speybroeck V, Thybault-Starzyk F, Van Der Voort P (2013) Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: total versus accessible silanols. Phys Chem Chem Phys 15(2):642–650

    Article  CAS  Google Scholar 

  15. Christy AA, Egeberg, Per K (2005) Quantitative determination of surface silanol groups in silicagel by deuterium exchange combined with infrared spectroscopy and chemometrics. Analyst 130(5):738–744

    Article  CAS  Google Scholar 

  16. Chakarova K, Drenchev N, Mihaylov M, Nikolov P, Hadjiivanov K (2013) OH/OD isotopic shift factors of isolated and H-bonded surface silanol groups. J Phys Chem C 117(10):5242–5248

    Article  CAS  Google Scholar 

  17. Warring S-L, Beattie D-A, McQuillan A-J (2016) Surficial siloxane-to-silanol interconversion during room-temperature hydration/dehydration of amorphous silica films observed by ATR-IR and TIR-Raman spectroscopy. Langmuir. 32(6):1568–1576

    Article  CAS  Google Scholar 

  18. Gallas J-P, Goupil J-M, Vimont A, Lavalley J-C, Gil B, Gilson J-P, Miserque O (2009) Quantification of water and silanol species on various silicas by coupling IR spectroscopy and in-situ thermogravimetry. Langmuir. 25(10):5825–5834

    Article  CAS  Google Scholar 

  19. Zhuravlev LT, Potapov VV (2006) Density of silanol groups on the surface of silica precipitated from a hydrothermal solution. Russ J Phys Chem 80(7):1119–1128

    Article  CAS  Google Scholar 

  20. Colthup NB, Daly LH, Wiberley SE (1990) In: Introduction to infrared and Raman spectroscopy (3rd ed.), Chapter 12, Academic Press, San Diego, pp 355–385

  21. Harris RK, Robins ML (1978) 29Si nuclear magnetic resonance studies of oligomeric and polymeric siloxanes: 4. Chemical shift effects of end-groups. Polymer 19:1123–1132

    Article  CAS  Google Scholar 

  22. Nam K-H, Lee T-H, Bae B-S, Popall M (2006) Condensation reaction of 3-(methacryloxypropyl)-trimethoxysilane and diisobutylsilanediol in non-hydrolytic sol-gel process. J Sol-Gel Sci Technol. 39(3):255–260

    Article  CAS  Google Scholar 

  23. Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319

    Article  CAS  Google Scholar 

  24. Malfatti L, Kidchob T, Falcaro P, Costacurta S, Piccinini M, Cestelli Guidi M, Marcelli A, Corrias A, Casula MF, Amenitsch, Innocenzi P (2007) Highly ordered self-assembled mesostructured membranes: porous structure and pore surface coverage. Microporous Mesoporous Mater 103:113–122

  25. Steinbrück N, Pohl S, Kickelbick G (2019) Platinum free thermally curable siloxanes for optoelectronic application—synthesis and properties. RSC Adv 9(4):2205–2216

    Article  Google Scholar 

  26. Jermouni T, Smaihi M, Hovnanian N (1995) Hydrolysis and initial polycondensation of phenyltrimethoxysilane and diphenyldimethoxysilane. J Mater Chem 5(8):1203–1208

    Article  CAS  Google Scholar 

  27. van Bommel J, Bernards TNM, Boonstra AH (1991) The influence of the addition of alkyl-substituted ethoxysilane on the hydrolysis—condensation process of TEOS. J Non-Cryst Solids 128:231–242

    Article  Google Scholar 

  28. Bae J-Y, Jang J, Bae B-S (2017) Transparent, thermally stable methyl siloxane hybrid materials using sol-gel synthesized vinyl-methyl oligosiloxane resin. J Sol−Gel Sci Technol 82(1):253–260

    Article  CAS  Google Scholar 

  29. Engelhardt G, Jncke H, Lippmaa E, Samoson A (1981) Structure investigations of solid organosilicon polymers by high resolution solid state 29Si NMR. J Organomet Chem 210(3):295–301

    Article  CAS  Google Scholar 

  30. Engelhardt G, Jancke H (1981) Structure investigation of organosilicon polymers by silicon-29 NMR. Polym Bull 5:577–584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kino, D., Okada, K., Tokudome, Y. et al. Reactivity of silanol group on siloxane oligomers for designing molecular structure and surface wettability. J Sol-Gel Sci Technol 97, 734–742 (2021). https://doi.org/10.1007/s10971-020-05448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05448-z

Keywords

Navigation