Skip to main content
Log in

Studying the preparation of pure Bi12SiO20 by Pechini method with high photocatalytic performance

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sillenite compound Bi12SiO20 was synthesized via Pechini sol–gel method. Composition, crystallinity, microscopic appearance, and optical properties of samples were characterized by XRD, SEM, FTIR, and UV/Vis/NIR spectrophotometer. The photocatalytic property of pure Bi12SiO20 was also investigated by detecting the degradation rate of rhodamine B (RhB). The experimental conditions related to the preparation of pure phase bismuth silicate, such as the content of citric acid, calcination temperature schedule, and the molar ratio of Bi/Si were investigated. And when n(citric acid) = 13 mmol, n(Bi/Si) = 10, and heat preservation at 630 °C for 5 h, pure bismuth silicate powder can be successfully synthesized. And the degradation of RhB by Bi12SiO20 under visible light for 150 min can reach to 80%, which indicated that pure Bi12SiO20 is an excellent photocatalyst under the visible light. In addition, the capture experiments demonstrate that (Vo+) dominates in photocatalytic degradation.

Highlights

  • Pure Bi12SiO20 photocatalyst can be successfully synthesized by Pechini method.

  • Bi12SiO20 has a typical sillenite structure with the band gap of 2.4 eV.

  • Bi12SiO20 shows a better visible-light photocatalytic performance than P25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen Z, Jiang X, Zhu C, Shi C (2016) Chromium-modified Bi4Ti3O12 photocatalyst: application for hydrogen evolution and pollutant degradation. Appl Catal B 199:241–251. https://doi.org/10.1016/j.apcatb.2016.06.036

    Article  CAS  Google Scholar 

  2. Wu YT, Liu TT, Yuan J, Liu CQ, Wang XF (2020) The preparation and study of multilayer structured SiO2-TiO2 film: the effects of photonic crystals on enhanced photocatalytic properties. J Mater Sci 55(25). https://doi.org/10.1007/s10853-020-04836-8

  3. Bernardes JC, Pinheiro GK, Muller D, Latocheski E, Domingos JB, Rambo CR (2020) Novel modified nonalkoxide sol-gel synthesis of multiphase high surface area TiO2 aerogels for photocatalysis. J Sol-Gel Sci Technol 94(2):425–434. https://doi.org/10.1007/s10971-020-05286-z

    Article  CAS  Google Scholar 

  4. Quintero Y, Mosquera E, Diosa J, Garcia A (2020) Ultrasonic-assisted sol-gel synthesis of TiO2 nanostructures: influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance. J Sol-Gel Sci Technol 94(2):477–485. https://doi.org/10.1007/s10971-020-05263-6

    Article  CAS  Google Scholar 

  5. Palhares HG, Goncalves BS, Castro Silva LM, Martins Nunes EH, Houmard M (2020) Clarifying the roles of hydrothermal treatment and silica addition to synthesize TiO2-based nanocomposites with high photocatalytic performance. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-020-05265-4

  6. Zhang YW, Xu JS, Mei J, Sarina S, Wu ZY, Liao T, Yan C, Sun ZQ (2020) Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J Hazard Mater 394:8. https://doi.org/10.1016/j.jhazmat.2020.122529

    Article  CAS  Google Scholar 

  7. Huang Y, Kang S, Yang Y, Qin H, Ni Z, Yang S, Li X (2016) Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl Catal B 196:89–99. https://doi.org/10.1016/j.apcatb.2016.05.022

    Article  CAS  Google Scholar 

  8. Xiang L, Chen L, Mo C-H, Zheng L-M, Yu Z-X, Li Y-W, Cai Q-Y, Li H, Yang W-D, Zhou D-M, Wong M-H (2018) Facile synthesis of Ni-doping Bi2WO6 nano-sheets with enhanced adsorptive and visible-light photocatalytic performances. J Mater Sci 53(10):7657–7671. https://doi.org/10.1007/s10853-018-2064-3

    Article  CAS  Google Scholar 

  9. Kong XY, Tong T, Ng B-J, Low J, Zeng TH, Mohamed AR, Yu J, Chai S-P (2020) Topotactic transformation of bismuth oxybromide into bismuth tungstate: bandgap modulation of single-crystalline {001}-faceted nanosheets for enhanced photocatalytic CO2 reduction. ACS Appl Mater Interace. https://doi.org/10.1021/acsami.9b15950

  10. BMRU Dowla, Cho JY, Jang WK, Oh W-C (2017) Synthesis of BiVO4-GO-PTFE nanocomposite photocatalysts for high efficient visible-light-induced photocatalytic performance for dyes. J Mater Sci 28(20):15106–15117. https://doi.org/10.1007/s10854-017-7386-4

    Article  CAS  Google Scholar 

  11. Zhou S, Yue P, Huang J, Wang L, She H, Wang Q (2019) High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method. Chem Eng J 371:885–892. https://doi.org/10.1016/j.cej.2019.04.124

    Article  CAS  Google Scholar 

  12. Zhao W, Dai B, Zhu F, Tu X, Xu J, Zhang L, Li S, Leung DYC, Sun C (2018) A novel 3D plasmonic p-n heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag2S/n-BiVO4 and its excellent photocatalytic reduction and oxidation activities. Appl Catal B 229:171–180. https://doi.org/10.1016/j.apcatb.2018.02.008

    Article  CAS  Google Scholar 

  13. Lin C, Ma J, Yi F, Zhang H, Qian Y, Zhang K (2020) Ag NPs modified plasmonic Z-scheme photocatalyst Bi4Ti3O12/Ag/Ag3PO4 with improved performance for pollutants removal under visible light irradiation. Ceram Int 46(10):14650–14661. https://doi.org/10.1016/j.ceramint.2020.02.266

    Article  CAS  Google Scholar 

  14. Tian H, Chen K, Ye X, Yang S, Gu Q (2019) Hydrothermal growth of Bi2Ti2O7/TiO2 and Bi4Ti3O12/TiO2 heterostructures on highly ordered TiO2-nanotube arrays for dye-sensitized solar cells. Ceram Int 45(16):20750–20757. https://doi.org/10.1016/j.ceramint.2019.07.059

    Article  CAS  Google Scholar 

  15. Han Q, Zhang J, Wang X, Zhu J (2015) Preparing Bi12SiO20 crystals at low temperature through nontopotactic solid-state transformation and improving its photocatalytic activity by etching. J Mater Chem A 3(14):7413–7421. https://doi.org/10.1039/c5ta00628g

    Article  CAS  Google Scholar 

  16. Jeong B-J, Joung M-R, Kweon S-H, Kim J-S, Nahm S, Choi J-W, Hwang S-J (2013) Microstructures and microwave dielectric properties of Bi2O3-deficient Bi12SiO20 ceramics. J Am Ceram Soc 96(7):2225–2229. https://doi.org/10.1111/jace.12323

    Article  CAS  Google Scholar 

  17. Dukali RM, Radovic I, Stojanovic DB, Uskokovic PS, Romcevic N, Radojevic V, Aleksic R (2014) Preparation, characterization and mechanical properties of Bi12SiO20-PMMA composite films. J Alloy Compd 583:376–381. https://doi.org/10.1016/j.jallcom.2013.08.206

    Article  CAS  Google Scholar 

  18. Nizhankovskiy VI (2019) Comparison of optical properties of Cr-doped Bi12TiO20 and Fe-doped Bi12SiO20. J Alloy Compd 771:1036–1039. https://doi.org/10.1016/j.jallcom.2018.09.011

    Article  CAS  Google Scholar 

  19. He C, Gu M (2006) Preparation, characterization and photocatalytic properties of Bi12SiO20 powders. Scr Mater 55(5):481–484. https://doi.org/10.1016/j.apsusc.2011.01.045

    Article  CAS  Google Scholar 

  20. Gu W, Teng F, Liu Z, Liu Z, Yang J, Teng Y (2018) Synthesis and photocatalytic properties of Bi2SiO5 and Bi12SiO20. J Photochem Photobiol A 353:395–400. https://doi.org/10.1016/j.jphotochem.2017.11.047

    Article  CAS  Google Scholar 

  21. Feng W, Fang J, Zhang L, Lu S, Wu S, Cheng C, Chen Y, Ling Y, Fang Z (2017) Plasmonic metallic Bi deposited Bi12SiO20 crystals with rich oxygen vacancies for enhanced photocatalytic degradation of RhB and 2,4-DCP. Mater Res Bull 94:45–53. https://doi.org/10.1016/j.materresbull.2017.05.042

    Article  CAS  Google Scholar 

  22. Lu J, Wang X, Jiang H, Xu Y (2013) Synthesis of Bismuth Silicate Powders by Molten Salt Method. Mater Manuf Process 28(2):126–129. https://doi.org/10.1080/10426914.2012.677902

    Article  CAS  Google Scholar 

  23. Jeong B-J, Joung M-R, Kweon S-H, Kim J-S, Nahm S, Choi J-W, Hwang S-J (2012) Microstructure and microwave dielectric properties of Bi12SiO20 ceramics. Mater Res Bull 47(12):4510–4513. https://doi.org/10.1016/j.materresbull.2012.08.075

    Article  CAS  Google Scholar 

  24. Wu Y, Li M, Wang X, Wang L, Gao H (2017) Preparation and fluorescence property of pure Bi2SiO5 powders by Pechini sol-gel method. Mater Manuf Process 32(5):480–483. https://doi.org/10.1080/10426914.2016.1221081

    Article  CAS  Google Scholar 

  25. Wu Y, Wang X (2011) Preparation and characterization of single-phase alpha-Fe2O3 nano-powders by Pechini sol-gel method. Mater Lett 65(13):2062–2065. https://doi.org/10.1016/j.matlet.2011.04.004

    Article  CAS  Google Scholar 

  26. Wu Y, Li M, Yuan J, Wang X (2017) Low temperature synthesis and photocatalytic performances of pure Bi2SiO5 powders via pechini sol-gel method. J Mater Sci 28(14):10406–10410. https://doi.org/10.1007/s10854-017-6811-z

    Article  CAS  Google Scholar 

  27. Wattanathana W, Nantharak W, Wannapaiboon S, Jantaratana P, Veranitisagul C, Koonsaeng N, Laobuthee A (2018) Barium ferrite prepared by modified Pechini method: effects of chloride and nitrate counter ions on microstructures and magnetic properties. J Mater Sci 29(2):1542–1553. https://doi.org/10.1007/s10854-017-8064-2

    Article  CAS  Google Scholar 

  28. Lu J, Dai Y, Zhu Y, Huang B (2011) Density functional characterization of pure and alkaline earth metal-doped Bi12GeO20, Bi12SiO20, and Bi12TiO20 photocatalysts. Chemcatchem 3(2):378–385. https://doi.org/10.1002/cctc.201000314

    Article  CAS  Google Scholar 

  29. Lima AF, Farias SAS, Lalic MV (2011) Structural, electronic, optical, and magneto-optical properties of Bi12MO20 (M = Ti, Ge, Si) sillenite crystals from first principles calculations. J Appl Phys 110(8). https://doi.org/10.1063/1.3652751

  30. Dai X-J, Luo Y-S, Fu S-Y, Chen W-Q, Lu Y (2010) Facile hydrothermal synthesis of 3D hierarchical Bi2SiO5 nanoflowers and their luminescent properties. Solid State Sci 12(4):637–642. https://doi.org/10.1016/j.solidstatesciences.2010.01.024

    Article  CAS  Google Scholar 

  31. Feng X, Qi X, Li J, Yang L, Qiu M, Yin J, Lu F, Zhong J (2011) Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays. Appl Surf Sci 257(13):5571–5575. https://doi.org/10.1016/j.apsusc.2011.01.045

    Article  CAS  Google Scholar 

  32. Veber A, Kunej S, Korosec RC, Suvorov D (2010) The effects of solvents on the formation of sol-gel-derived Bi12SiO20 thin films. J Eur Ceram Soc 30(12):2475–2480. https://doi.org/10.1016/j.jeurceramsoc.2010.04.026

    Article  CAS  Google Scholar 

  33. Mihailova B, Konstantinov L, Petrova D, Gospodinov M (1997) Effect of doping on Raman spectra of Bi12SiO20. Solid State Commun 102(6):441–444. https://doi.org/10.1016/S0022-3697(99)00195-X

    Article  CAS  Google Scholar 

  34. Wu Y, Li X, Liu C, Chang X, Hu X (2020) Studies on the active radicals in synthesized inverse opal photonic crystal and its effect on photocatalytic removal of organic pollutants. J Mol Liq 320. https://doi.org/10.1016/j.molliq.2020.114414

  35. ZL A, ZZ B, LW A, XM A (2020) Bismuth chromate (Bi2CrO6): a promising semiconductor in photocatalysis. J Catal 382:40–48. https://doi.org/10.1016/j.jcat.2019.12.001

    Article  CAS  Google Scholar 

  36. Min W, Jin C, Li Z, You M, Yu Z, Tong Z (2018) The effects of bismuth (III) doping and ultrathin nanosheets construction on the photocatalytic performance of graphitic carbon nitride for antibiotic degradation. J Colloid Interface Sci 533:513–525. https://doi.org/10.1016/j.jcis.2018.08.113

    Article  CAS  Google Scholar 

  37. Yu Y, Wu K, Xu W, Chen D, Fang J, Zhu X, Sun J, Liang Y, Hu X, Li R, Fang Z (2020) Adsorption-photocatalysis synergistic removal of contaminants under antibiotic and Cr(VI) coexistence environment using non-metal g-C3N4 based nanomaterial obtained by supramolecular self-assembly method. J Hazard Mater 404(Pt A):124171–124171. https://doi.org/10.1016/j.jhazmat.2020.124171

    Article  CAS  Google Scholar 

  38. Dong F, Li Q, Sun Y, Ho WK (2015) Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal 4(12):4341–4350. https://doi.org/10.1021/cs501038q

    Article  CAS  Google Scholar 

  39. Lyu J, Hu Z, Li Z, Ge M (2019) Removal of tetracycline by BiOBr microspheres with oxygen vacancies: combination of adsorption and photocatalysis. J Phys Chem Solids 129:61–70. https://doi.org/10.1016/j.jpcs.2018.12.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Research Project of Science and Technology Department of Shaanxi Province (No. 2018GY-106), the National Natural Science Foundation of China (Grant nos 51302161 and 51702194), and the Special Scientific Research Plan Project of Shaanxi Provincial Education Department (No. 17JK0088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanting Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chang, X., Li, M. et al. Studying the preparation of pure Bi12SiO20 by Pechini method with high photocatalytic performance. J Sol-Gel Sci Technol 97, 311–319 (2021). https://doi.org/10.1007/s10971-020-05447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05447-0

Keywords

Navigation