Skip to main content
Log in

Investigation of lanthanum substitution effects in yttrium aluminium garnet: importance of solid state NMR and EPR methods

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, yttrium aluminium garnet (YAG) specimens in which yttrium was partially substituted by lanthanum Y3-xLaxAl5O12 (YLaAG) were prepared by an aqueous sol-gel method. YLaAG samples were analyzed by X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) methods. The presence of Ce3+ ions as an impurity originating from starting material was determined, therefore, luminescence measurements of YLaAG samples were also recorded. It was demonstrated that luminescent properties are strongly dependent on the phase composition of synthesized species. The XRD analysis results showed that only low substitution of yttrium by lanthanum is possible in Y3-xLaxAl5O12 without destroying garnet crystal structure. It was also demonstrated, that solid state NMR and EPR methods are indispensable tools for the explanation of processes and properties observed in the newly synthesized Y3-xLaxAl5O12 compounds.

Highlights

  • Y3-xLaxAl5O12 specimens were synthesized using aqueous sol-gel synthesis method.

  • Monophasic garnets obtained at low substitution of yttrium by lanthanum.

  • The region of coexisting phases have been evidently deduced by solid state NMR spectroscopy.

  • The Ce3+ emission at around 560 nm was observed in Y3-xLaxAl5O12 garnets.

  • The EPR analysis provided experimental evidence for the presence of Ce3+ impurities in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skaudzius R, Enseling D, Skapas M, Selskis A, Pomjakushina E, Juestel T, Kareiva A, Ruegg C (2016) Europium-enabled luminescent single crystal and bulk YAG and YGG for optical imaging. Opt Mater 60:467–473

    CAS  Google Scholar 

  2. D Sedmidubsky, V Jakes, K Rubesova, P Nekvindova, T Hlasek, R Yatskiv, P Novak, Magnetism and optical properties of Yb3Al5O12 hosted Er3+ - experiment and theory. J All Cmpd 810 (2019) Art. No.: UNSP 151903

  3. Pavasaryte L, Katelnikovas A, Momot A, Reekmans G, Hardy A, Van Bael M, Adriaensens P, Yang TCK, Kareiva A (2019) Eu3+ - doped Ln3Al5O12 (Ln = Er, Tm, Yb, Lu) garnets: Synthesis, characterization and investigation of structural and luminescence properties. J Lumin 212:14–22

    CAS  Google Scholar 

  4. Skruodiene M, Katelnikovas A, Vasylechko L, Skaudzius R (2019) Tb3+ to Cr3+ energy transfer in a co-doped Y3Al5O12 host. J Lumin 208:327–333

    CAS  Google Scholar 

  5. Michalkova M, Kraxner J, Michalek M, Galusek D (2020) Preparation of translucent YAG glass/ceramic at temperatures below 900 degrees C. J Eur Ceram Soc 40:2581–2585

    CAS  Google Scholar 

  6. Almomani MA, Al-Widyan MI, Mohaidat SM (2020) Thermal shock resistance of yttrium aluminium oxide Y3Al5O12 thermal barrier coating for titanium alloy. J Mechan Eng Sci 14:6514–6525

    CAS  Google Scholar 

  7. Katelnikovas A, Justel T, Uhlich D, Jorgensen J-E, Sakirzanovas S, Kareiva A (2008) Characterization of cerium-doped yttrium aluminium garnet nanopowders synthesized via sol-gel process. Chem Eng Comm 195:758–769

    CAS  Google Scholar 

  8. Xu MM, Zhang ZJ, Zhao JT, Zhang JZ, Liu ZW (2015) Low temperature synthesis of monodispersed YAG:Eu crystallites by hydrothermal method. J All Compd 647:1075–1080

    CAS  Google Scholar 

  9. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Progr Solid State Chem 18:259–342

    CAS  Google Scholar 

  10. Brinker CJ, Scherrer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York

    Google Scholar 

  11. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    CAS  Google Scholar 

  12. Mackenzie JD, Bescher EP (2007) Chemical routes in the synthesis of nanomaterials using the sol-gel process. Acc Chem Res 40:810–818

    CAS  Google Scholar 

  13. Ishikawa K, Garskaite E, Kareiva A (2020) Sol-gel synthesis of calcium phosphate-based biomaterials - A review of environmentally benign, simple and effective synthesis routes. J Sol-Gel Sci Technol 94:551–572

    CAS  Google Scholar 

  14. Dubnikova N, Garskaite E, Pinkas J, Bezdicka P, Beganskiene A, Kareiva A (2010) Sol-gel preparation of selected lanthanide aluminium garnets. J Sol-Gel Sci Techn 55:213–219

    CAS  Google Scholar 

  15. Dubnikova N, Garskaite E, Raudonis R, Kareiva A (2012) Neodymium substitution effects in sol-gel derived Y3-xNdxAl5O12. Mater Chem Phys 137:660–664

    CAS  Google Scholar 

  16. Skaudzius R, Sakirzanovas S, Kareiva A (2018) On the samarium substitution effects in Y3-xSmxAl5O12 (x = 0.1-3.0). J Electron Mater 47:3951–3956

    CAS  Google Scholar 

  17. Garskaite E, Dubnikova N, Katelnikovas A, Pinkas J, Kareiva A (2007) Syntheses and characterisation of Gd3Al5O12 and La3Al5O12 garnets. Collect Czech Chem Commun 72:321–333

    CAS  Google Scholar 

  18. Skaudzius R, Zalga A, Kareiva A (2008) Sol-gel synthesis of nanocrystalline LaAlO3-M2O3 (M = La, Al) and Nd:LaAlO3-M2O3 composite materials via „phase metathesis“ route. Mater Sci (Medžiagotyra) 14:193–197

    Google Scholar 

  19. Pavasaryte L, Katelnikovas A, Klimavicius V, Balevicius V, Krajnc A, Mali G, Plavec J, Kareiva A (2017) Eu3+-Doped Y3-xNdxAl5O12 garnet: synthesis and structural investigation. Phys Chem Chem Phys 19:3729–3737

    CAS  Google Scholar 

  20. Pavasaryte L, Katelnikovas A, Klimavicius V, Balevicius V, Momot A, Van Bael M, Hardy A, Kareiva A (2018) Eu3+-Doped Y3-xSmxAl5O12 garnet: synthesis and structural investigation. N. J Chem 42:2278–2287

    CAS  Google Scholar 

  21. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    CAS  Google Scholar 

  22. Misevicius M, Dagys L, Maršalka A, Kristinaitytė K, Balevicius V (2020) 27Al MAS NMR spectroscopy study of Eu2+-doped and Dy3+-co-doped SrAl4O7. Lith J Phys 60:91–98

    Google Scholar 

  23. Alahraché S, Deschamps M, Lambert J, Suchomel MR, De Sousa Meneses D, Matzen G, Massiot D, Véron E, Allix M (2011) Crystallization of Y2O3–Al2O3 Rich Glasses: Synthesis of YAG Glass-Ceramics. J Phys Chem C 115:20499–20506

    Google Scholar 

  24. Du LS, Stebbins JF (2004) Calcium and strontium hexaluminates: NMR evidence that “Pentacoordinate” cation sites are four-coordinated. J Phys Chem B 108:3681–3685

    CAS  Google Scholar 

  25. Jansen SR, Hintzen HT, Metselaar R, de Haan JW, van de Ven LJM, Kentgens APM, Nachtegaal GH (1998) Multiple quantum 27Al magic-angle-spinning nuclear magnetic resonance spectroscopic study of SrAl12O19: identification of a 27Al resonance from a well-defined AlO5 site. J Phys Chem B 102:5969–5976

    CAS  Google Scholar 

  26. Harindranath K, Anusree Viswanath K, Vinod Chandranb C, Bräuniger T, Madhuc PK, Ajithkumar TG, Joy PA (2010) Evidence for the co-existence of distorted tetrahedral and trigonal bipyramidal aluminum sites in SrAl12O19 from 27Al NMR studies. Solid State Commun 150:262–266

    CAS  Google Scholar 

  27. Thomas NW (1989) Crystal structure-physical property relationships in perovskites. Acta Cryst B 45:337–344

    Google Scholar 

  28. Zeng Z, Xu Y, Zhang Z, Gao Z, Luo M, Yin Z, Zhang C, Xu J, Huang B, Luo F, Du Y, Yan C (2020) Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem Soc Rev 49:1109–1143

    CAS  Google Scholar 

  29. Reid MF (2016) Theory of rare-earth electronic structure and spectroscopy. In.: Handbook on the physics and chemistry of rare earths / Ed. JCG Bunzli, VK Pecharsky, 50:47–64

  30. Suffren Y, Leynaud O, Plaindoux P, Brenier A, Gautier-Luneau I (2016) Differences and similarities between lanthanum and rare-earth iodate anhydrous polymorphs: structures, thermal behaviors, and luminescent properties. Inorg Chem 55:11264–11272

    CAS  Google Scholar 

  31. Nagpure PA, Bajaj NS, Sonekar RP, Omanwar SK (2011) Synthesis and luminescence studies of novel rare earth activated lanthanum pentaborate. Ind J Pure Appl Phys 49:799–802

    CAS  Google Scholar 

  32. Kruk A, Polnar J (2020) Investigation on the physicochemical properties of La-doped Er0.05Y1.95O3 nanopowders. J Therm Anal Calorim 139:765–773

    CAS  Google Scholar 

  33. Wang GQ, Liu BW, Lin YP, Shi Y, Ye R, Li LY (2020) Color-tunable upconversion luminescence in novel lanthanum borogermanates for optical thermometry application. J All Cmpd 826. Art. No.: 153274

  34. Colmont M, Boutinaud P, Latouche C, Massuyeau F, Huve M, Zadoya A, Jobic S (2020) Origin of luminescence in La2MoO6 and La2Mo2O9 and their Bi-doped variants. Inorg Chem 59:3215–3220

    CAS  Google Scholar 

  35. Freeda M, Subash TD (2017) Comparision of photoluminescence studies of lanthanum, terbium doped calcium cluminate nanophosphors (CaAl2O4:La, CaAl2O4:Tb) by sol-gel method. Mater Today Proceed 4:4302–4307

    Google Scholar 

  36. Katelnikovas A, Sakirzanovas S, Dutczak D, Plewa J, Enseling D, Winkler H, Kareiva A, Jüstel T (2013) Synthesis and optical properties of yellow emitting garnet phosphors for pcLEDs. J Lumin 136:17–25

    CAS  Google Scholar 

  37. Zhou Z, Zhou N, Lu X, Kate M, Valdesueiro D, van Ommen JR, Hintzend HT(Bert)(2016) Performance improvement by alumina coatings on Y3Al5O12:Ce3+ phosphor powder deposited using atomic layer deposition in a fluidized bed reactor RSC Adv 6:76454–76462

    CAS  Google Scholar 

  38. Katelnikovas A, Bareika T, Vitta P, Jüstel T, Winkler H, Kareiva A, Zukauskas A, Tamulaitis G (2010) Y3-xMg2AlSi2O12:Cex3+ phosphors – prospective for warm-white light emitting diodes. Opt Mater 32:1261–1265

    CAS  Google Scholar 

  39. Nakamura H, Shinozaki K, Okumura T, Nomura K, Akai T (2020) Massive red shift of Ce3+ in Y3Al5O12 incorporating super-high content of Ce. RSC Adv 10:12535–12546

    CAS  Google Scholar 

  40. Jia Y, Huang Y, Guo N, Qiao H, Zheng Y, Lv W, Zhao Q, You H (2012) Mg1.5Lu1.5Al3.5Si1.5O12:Ce3+,Mn2+: A novel garnet phosphor with adjustable emission color for blue light-emitting diodes. RSC Adv 2:2678–2681

    CAS  Google Scholar 

  41. Lewis HR (1966) Paramagnetic resonance of Ce3+ in yttrium aluminum garnet. J Appl Phys 37:739–741

    CAS  Google Scholar 

  42. Asatryan GR, Kramushchenko DD, Uspenskaya YA, Baranov PG, Petrosyan AG (2014) Family of paramagnetic centers of Ce3+ ions in yttrium aluminum garnet. Phys Solid State 56:1150–1156

    CAS  Google Scholar 

  43. Azamat DV, Belykh VV, Yakovlev DR, Fobbe F, Feng DH, Evers E, Jastrabik L, Dejneka A, Bayer M (2017) Electron spin dynamics of Ce3+ ions in YAG crystals studied by pulse-EPR and pump-probe Faraday rotation. Phys Rev B 96:1–10

    Google Scholar 

  44. Edinach EV, Uspenskaya YA, Gurin AS, Babunts RA, Asatryan HR, Romanov NG, Badalyan AG, Baranov PG (2019) Electronic structure of non-Kramers Tb3+ centers in garnet crystals and evidence of their energy and spin transfer to Ce3+ emitters. Phys Rev B 100:1–14

    Google Scholar 

  45. Zhang W, Lu T, Wei N, Ma B, Li F, Lu Z, Qi J (2012) Effect of annealing on the optical properties of Nd:YAG transparent ceramics. Opt Mater 34:685–690

    CAS  Google Scholar 

  46. Rimai L, Kushida T (1966) Paramagnetic resonance of Fe3+ in yttrium aluminum, lutetium aluminum, and lutetium gallium garnets. Phys Rev 143:160–164

    CAS  Google Scholar 

  47. Chen CY, Pogatshnik GJ, Chen Y, Kokta MR (1988) Optical and electron paramagnetic resonance studies of Fe impurities in yttrium aluminum garnet crystals. Phys Rev B 38:8555–8561

    CAS  Google Scholar 

  48. Stoll S (2015) CW-EPR spectral simulations: solid state. Methods Enzymol 563:121–142

    CAS  Google Scholar 

  49. Aasa R (1970) Powder line shapes in the electron paramagnetic resonance spectra of high‐spin ferric complexes. J Chem Phys 52(8):3919–3930

    CAS  Google Scholar 

  50. Telser J(2017) EPR interact - zero-field splittings, eMagRes 6(2):207–233

    CAS  Google Scholar 

  51. Havlák L, Bárta J, Buryi M, Jarý V, Mihóková E, Laguta V, Boháček P, Nikl M (2016) Eu2+ stabilization in YAG structure: optical and electron paramagnetic resonance study. J Phys Chem C 120(38):21751–21761

    Google Scholar 

  52. Buryi M, Havlák L, Jarý V, Bárta J, Laguta V, Beitlerová A, Li J, Chen X, Yuan Y, Liu Q, Pan Y, Nikl M (2020) Specific absorption in Y3Al5O12:Eu ceramics and the role of stable Eu2+ in energy transfer processes. J Mat Chem C 8(26):8823–8839

    CAS  Google Scholar 

  53. Garskaite E, Lindgren M, Einarsrud M-A, Grande T (2010) Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol–gel technique. J Eur Ceram Soc 30:1707–1715

    CAS  Google Scholar 

  54. Liu Y, Bai GX, Pan E, Hua YJ, Chen L, Xu SQ (2020) Upconversion fluorescence property of Er3+/Yb3+ codoped lanthanum titanate microcrystals for optical thermometry. J All Cmpd 822:153449

    CAS  Google Scholar 

  55. Vairapperumal T, Lakshmi M, Kumar RV, Janardhanan SK, Kumar MA (2020) Dual mode luminescence from lanthanum orthovanadate nanoparticles. J Lumin 217:116761

    Google Scholar 

  56. Zhao C, Zhu D, Ma M, Han T, Tu M (2012) Brownish red emitting YAG:Ce3+,Cu+ phosphors for enhancing the color rendering index of white LEDs. J All Cmpd 523:151–154

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research grant NEGEMAT (No. S-MIP-19-59) from the Research Council of Lithuania. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART²

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kareiva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurikenas, A., Sakalauskas, D., Marsalka, A. et al. Investigation of lanthanum substitution effects in yttrium aluminium garnet: importance of solid state NMR and EPR methods. J Sol-Gel Sci Technol 97, 479–487 (2021). https://doi.org/10.1007/s10971-020-05445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05445-2

Keywords

Navigation