Skip to main content
Log in

Fabrication and characterization of a novel nanoporous nanoaerogel based on gelatin as a biosorbent for removing heavy metal ions

  • Original Paper: Sol–gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this research, we proposed a synthesis of nano-silica aerogel (NSA, S1–S3) and nano-silica aerogel gelatin (NSA-G, S4–S6), which were hybrid aerogel by sol–gel method via ambient pressure drying. The aerogels’ backbone was modified by montmorillonite (MMT) in NSA and for NSA-G gelatin (G) and MMT were used to stabilize their building block. Also, free hydroxyl groups on their surface were changed to TMS-O and became more hydrophobic aerogels. The porosity results showed that the density of the optimum aerogels (S2 and S5) ranged from 0.084 to 0.047 g/cm3. It was also found that the hydrophobicity of the NSA-G aerogel decreased with increasing the content of gelatin into the silica aerogels. However, these aerogels were fully characterized by FTIR, FESEM, EDS, XRD, BET, and TGA/DTA analysis and they used as the adsorbent of Cu2+ and Ni2+ ions in aqueous media. The prepared aerogels effectively could remove these heavy metals from the aqueous media and NSA-G absorbent also illustrated a favorable result for adsorption. Also, the recyclability test for four adsorption–desorption of aerogels cycles was examined and they had a good effect even after the fourth cycle.

Highlights

  • The novel NSA and NSA-G as effective adsorbents were successfully prepared.

  • The adsorbents exhibited high sorption capacity for adsorbing Cu2+ and Ni2+ ions.

  • TGA/DTG of NSA-G exhibiting more thermal resistance in compare to NSA.

  • FESEM result indicating more compact structure for NSA-G with size 46–77 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tian Z, Zhang L, Shi G, Sang X, Ni C (2018) The synthesis of modified alginate flocculants and their properties for removing heavy metal ions of wastewater. J Appl Polym Sci 135:46577

    Article  Google Scholar 

  2. Nemati Dil N, Sadeghi M (2018) Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) me ions. J Hazard Mater 351:38–53

    Article  Google Scholar 

  3. Efome JE, Rana D, Matsuura T, Lan CQ (2018) Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chem Eng J 352:737–744

    Article  CAS  Google Scholar 

  4. Fakhre NA, Ibrahim BM (2018) The use of new chemically modified cellulose for heavy metal ion adsorption. J Hazard Mater 343:324–331

    Article  CAS  Google Scholar 

  5. Baiya C, Nannuan L, Tassanapukdee Y, Chailapakul O, Songsrirote K (2019) The synthesis of carboxymethyl cellulose-based hydrogel from sugarcane bagasse using microwave-assisted irradiation for selective adsorption of copper (II) ions. Environ Prog Sustain Energy 38:S157–S165

    Article  CAS  Google Scholar 

  6. Nguyen TC, Loganathan P, Nguyen TV, Kandasamy J, Naidu R, Vigneswaran S (2018) Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Environ Sci Pollut R 25:20430–20438

    Article  CAS  Google Scholar 

  7. Hasegawa G, Shimizu T, Kanamori K, Maeno A, Kaji H, Nakanishi K (2017) Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: Insights into the origin of their mechanical properties. Chem Mater 29:2122–2134

    Article  CAS  Google Scholar 

  8. Meador MAB, Alemán CR, Hanson K, Ramirez N, Vivod SL, Wilmoth N, McCorkle L (2015) Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7:1240–1249

    Article  CAS  Google Scholar 

  9. Lin YF, Syu CR, Huang KW, Lin KYA (2019) Synthesis of Silica Aerogel Membranes using Low-Cost Silicate Precursors for Carbon Dioxide Capture. Chem Phys Lett 726:13–17

    Article  CAS  Google Scholar 

  10. Meador MA, Miranda F, Van Keuls F (2016) Aerogel-based antennas for aerospace and terrestrial applications. In Google Patents. https://patents.google.com/patent/US10446920B1/en

  11. Mi HY, Jing X, Huang HX, Peng XF, Turng LS (2018) Superhydrophobic graphene/cellulose/silica aerogel with hierarchical structure as superabsorbers for high efficiency selective oil absorption and recovery. Ind Eng Chem Res 57:1745–1755

    Article  CAS  Google Scholar 

  12. Follmann HD, Oliveira ON, Lazarin-Bidóia D, Nakamura CV, Huang X, Asefa T, Silva R (2018) Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale 10:1704–1715

    Article  CAS  Google Scholar 

  13. Kabiri S, Tran DN, Azari S, Losic D (2015) Graphene-diatom silica aerogels for efficient removal of mercury ions from water. ACS Appl Mater Interfaces 7:11815–11823

    Article  CAS  Google Scholar 

  14. Yun S, Guo T, Zhang J, He L, Li Y, Li H, Zhu X, Gao Y (2017) Facile synthesis of large-sized monolithic methyltrimethoxysilane-based silica aerogel via ambient pressure drying. J Sol-Gel Sci Technol 83:53–63

    Article  CAS  Google Scholar 

  15. Feng Q, Chen K, Ma D, Lin H, Liu Z, Qin S, Luo Y (2018) Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloids Surf Physicochem Eng Aspects 539:399–406

    Article  CAS  Google Scholar 

  16. Kistler SS (1931) Coherent expanded-aerogels. J Phys Chem 36:52–64

    Article  Google Scholar 

  17. Danks A, Hall S, Schnepp Z (2016) The evolution of ‘sol–gel’chemistry as a technique for materials synthesis. Mater Horiz 3:91–112

    Article  CAS  Google Scholar 

  18. He S, Yang H, Chen X (2017) Facile synthesis of highly porous silica aerogel granules and its burning behavior under radiation. J Sol-Gel Sci Technol 82:407–416

    Article  CAS  Google Scholar 

  19. Estella J, Echeverría JC, Laguna M, Garrido JJ (2008) Effect of supercritical drying conditions in ethanol on the structural and textural properties of silica aerogels. J Porous Mater 15:705–713

    Article  CAS  Google Scholar 

  20. He F, Zhao H, Qu X, Zhang C, Qiu W (2009) Modified aging process for silica aerogel. J Mater Process Technol 209:1621–1626

    Article  CAS  Google Scholar 

  21. Smith DM, Stein D, Anderson JM, Ackerman W (1995) Preparation of low-density xerogels at ambient pressure. J Non-Cryst Solids 186:104–112

    Article  CAS  Google Scholar 

  22. Uchida N, Ishiyama N, Kato Z, Uematsu K (1994) Chemical effects of DCCA to the sol-gel reaction process. J Mater Sci 29:5188–5192

    Article  CAS  Google Scholar 

  23. Kim CE, Yoon JS, Hwang HJ (2008) Synthesis of nanoporous silica aerogel by ambient pressure drying. J Sol-Gel Sci Technol 49:47

    Article  CAS  Google Scholar 

  24. Gurav JL, Nadargi DY, Rao AV (2008) Effect of mixed catalysts system on TEOS-based silica aerogels dried at ambient pressure. Appl Surf Sci 255:3019–3027

    Article  CAS  Google Scholar 

  25. Shi F, Wang L, Liu J (2006) Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater Lett 60:3718–3722

    Article  CAS  Google Scholar 

  26. He S, Huang D, Bi H, Li Z, Yang H, Cheng X (2015) Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass. J Non-Cryst Solids 410:58–64

    Article  CAS  Google Scholar 

  27. Smith DM, Maskara A, Boes U (1998) Aerogel-based thermal insulation. J Non-Cryst Solids 225:254–259

    Article  CAS  Google Scholar 

  28. Liu S, Yao F, Oderinde O, Zhang Z, Fu G (2017) Green synthesis of oriented xanthan gum–graphene oxide hybrid aerogels for water purification. Carbohydr Polym 174:392–399

    Article  CAS  Google Scholar 

  29. Ebisike K, Okoronkwo AE, Alaneme KK (2019) Adsorption of Cd (II) on chitosan–silica hybrid aerogel from aqueous solution. Environ. Technol Innovation 14:100337

    Google Scholar 

  30. Ebisike K, Okoronkwo AE, Alaneme KK (2018) Synthesis and characterization of Chitosan-silica hybrid aerogel using sol-gel method. JKSUS 32:550–554

    Google Scholar 

  31. Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohydr Polym 122:293–300

    Article  CAS  Google Scholar 

  32. Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C 53:212–221

    Article  CAS  Google Scholar 

  33. Jamilah B, Harvinder K (2002) Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem 77:81–84

    Article  CAS  Google Scholar 

  34. Wang B, Bai Z, Jiang H, Prinsen P, Luque R, Zhao S, Xuan J (2019) Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: Characteristics, modeling and application. J Hazard Mater 364:192–205

    Article  CAS  Google Scholar 

  35. Xu C, Shi S, Wang X, Zhou H, Wang L, Zhu L, Zhang G, Xu D (2019) Electrospun SiO2-MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). J Hazard Mater 381:120974

    Article  Google Scholar 

  36. Ma H, Wang S, Meng F, Xu X, Huo X (2017) A hydrazone-carboxyl ligand-linked cellulose nanocrystal aerogel with high elasticity and fast oil/water separation. Cellulose 24:797–809

    Article  CAS  Google Scholar 

  37. Gong JL, Wang XY, Zeng GM, Chen L, Deng JH, Zhang XR, Niu QY (2012) Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem Eng J 185:100–107

    Article  Google Scholar 

  38. Habila MB, Alothman ZA, El-Toni AM, Labis JP, Soylak M (2016) Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis. Talanta 154:539–547

    Article  CAS  Google Scholar 

  39. Mahmoud ME, Fekry NA, El-Latif MMA (2016) Nanocomposites of nanosilica-immobilized-nanopolyaniline and crosslinked nanopolyaniline for removal of heavy metals. Chem Eng J 304:679–691

    Article  CAS  Google Scholar 

  40. Vergili I, Beril Gönder Z, Kaya Y, Gürdağ G, Cavus S (2017) Lead removal from battery wastewater using synthesized poly (ethyleneglycol dimethacrylatemethacrylic acid) gel bead and poly(methacrylic acid) hydrogel. Polym Bull 74:2605–2624

    Article  CAS  Google Scholar 

  41. Eid MS, Azzam GH, Eshaq AM, Rabie AA, Bakr AA, Abd-Elaal AE, El Metwally SM (2016) Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution. Int J Biol Macromol 89:507–517

    Article  Google Scholar 

  42. Fang X, Zhu S, Ma J, Wang F, Xu H, Xia M (2020) The facile synthesis of zoledronate functionalized hydroxyapatite amorphous hybrid nanobiomaterial and its excellent removal performance on Pb2+ and Cu2+. J Hazard Mater 392:122291

    Article  CAS  Google Scholar 

  43. Wang H, Wang Z, Yue R, Gao F, Ren R, Wei J, Wang X, Kong Z (2020) Functional group-rich hyperbranched magnetic material for simultaneous efficient removal of heavy metal ions from aqueous solution. J Hazard Mater 384:121288

    Article  CAS  Google Scholar 

  44. Alsohaimi IH, Wabaidur SM, Kumar M, Khan MA, Alothman ZA, Abdalla Abulhassan M(2015) Synthesis, characterization of PMDA/TMSPEDA hybrid nano-composite and its applications as an adsorbent for the removal of bivalent heavy metals ions Chem Eng J 270:9–21

    Article  CAS  Google Scholar 

  45. Liu P, Jiang L, Zhu L, Guo J, Wang A (2015) Synthesis of covalently crosslinked attapulgite/poly (acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. J Indust Eng Chem 23:188–193

    Article  CAS  Google Scholar 

  46. Srivastava N, Thakur AK, Shahi VK (2016) Phosphorylated cellulose triacetate–silica composite adsorbent for recovery of heavy metal ion. Carbohydr Polym 136:1315–1322

    Article  CAS  Google Scholar 

  47. Zhao R, Li X, Sun B, Shen M, Tan X, Ding Y, Jiang Z, Wang C (2015) Preparation of phosphorylated poly acrylo nitrile-based nano fiber mat and its application for heavy metal ion removal. Chem Eng J 268:290–299

    Article  CAS  Google Scholar 

  48. Anirudhan TS, Ramachandran M (2008) Synthesis and characterization of amidoximated polyacrylonitrile/organobentonite composite for Cu(II), Zn(II), and Cd(II) adsorption from aqueous solutions and industry wastewaters. Ind Eng Chem Res 47:6175–6184

    Article  CAS  Google Scholar 

  49. Poureteda HR, Kazemi M (2012) Characterization of modified silica aerogel using sodium silicate precursor and its application as adsorbent of Cu2+, Cd2+, and Pb2+ ions. Int J Ind Chem 3:20–28

    Article  Google Scholar 

  50. Qin L, Ge Y, Deng B, Li Z (2017) Poly (ethylene imine) anchored lignin composite for heavy metals capturing in water. J Taiwan Inst Chem 71:84–90

    Article  CAS  Google Scholar 

  51. Huang CH, Hsieh TH, Chiu WY (2014) Evaluation of thermally crosslinkable chitosan-based nano fibrous mats for the removal of metal ions. Carbohydr Polym 116:249–254

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Azad University of Arak-Iran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadeghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematidil, N., Nezami, S., Mirzaie, F. et al. Fabrication and characterization of a novel nanoporous nanoaerogel based on gelatin as a biosorbent for removing heavy metal ions. J Sol-Gel Sci Technol 97, 721–733 (2021). https://doi.org/10.1007/s10971-020-05439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05439-0

Keywords

Navigation