Skip to main content
Log in

Synthesis and luminescence investigation of SBA-15/NaYF4:Yb/Er composites

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

One of the main approaches toward obtaining efficient up converting materials with practical applications involves the development of composites with synergism between components. Herein, we reported an optical temperature sensing using up-conversion fluorescence emission at 530 and 550 nm in the Er3+/Yb3+-co-doped NaYF4 nanoparticles and SBA-15/NaYF4:Yb,Er composites excited at 976 nm. Nanoparticles and composites were prepared and investigated by X-ray diffractometry, N2 adsorption–desorption isotherms, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and up-conversion photoluminescence. Spherical like NaYF4:Yb,Er nanoparticles exhibited a mixture of hexagonal and cubic phases, while the rare earth ions incorporated inside of SBA-15 mesopores crystallized in a cubic phase. Optical thermometry property was investigated in the temperature range from 30 to 90 °C, and a maximum absolute sensitivity were 0.03/°C and 0.38/°C for nanoparticles and composites, respectively. The lower temperature range makes the composites with potential for application in biological systems.

Highlights

  • Rare earth ions incorporated in the SBA-15.

  • Up-conversion of SBA-15/NaYF4:Yb/Er composites.

  • Low temperature and concentration of composite suitable for biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li X, Xue Z, Liu H (2016) Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning. J Alloy Compd 681:379–383. https://doi.org/10.1016/j.jallcom.2016.04.204

    Article  CAS  Google Scholar 

  2. Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA (2015) Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev 44:1561–1584. https://doi.org/10.1039/c4cs00177j

    Article  CAS  Google Scholar 

  3. Xianjia L, Yuminami R, Sakurai T, Akimoto K (2013) A novel synthesis method and upconversion properties of hexagonal-phase NaYF4:Er nano-crystals. J Rare Earth 31:267–270. https://doi.org/10.1016/S1002-0721(12)60270-1

    Article  CAS  Google Scholar 

  4. Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31:7078–7085. https://doi.org/10.1016/j.biomaterials.2010.05.065

    Article  CAS  Google Scholar 

  5. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201. https://doi.org/10.1039/c2cs35288e

    Article  CAS  Google Scholar 

  6. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323–1349. https://doi.org/10.1039/c1cs15187h

    Article  CAS  Google Scholar 

  7. Zhao B, Qi N, Zhang K-M, Gon gX (2016) Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior. Phys Chem Chem Phys 18:15289–15294. https://doi.org/10.1039/c6cp02024k

    Article  CAS  Google Scholar 

  8. Xu CT, Zhan Q, Liu H, Somesfalean G, Qian J, He S, Andersson-Engels S (2013) Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future challenges. Laser Photonics Rev 7:663–697. https://doi.org/10.1002/lpor.201200052

    Article  CAS  Google Scholar 

  9. Wu X, Yin S, Dong Q, Liu B, Wang Y, Sekino T, Lee SW, Sato T (2013) UV, visible and near-infrared lights induced NOx destruction activity of (Yb,Er)-NaYF4/C-TiO2 composite. Sci Rep 3:2918–2925. https://doi.org/10.1038/srep02918

    Article  Google Scholar 

  10. Carlos LD, Palacio F (2016) Thermometry at the nanoscale: techniques and selected applications. Royal Society of Chemistry, Cambridge

    Google Scholar 

  11. Manzani D, da Silveira Petruci JF, Nigoghossian K, Cardoso AA, Ribeiro SJL (2017) A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass. Sci Rep 7(11pp):41596. https://doi.org/10.1038/srep41596

  12. Shen J, Chen G, Vu A-M, Fan W, Bilsel OS, Chang C-C, Han G (2013) Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater 1:644–650. https://doi.org/10.1002/adom.201300160

    Article  Google Scholar 

  13. Sun T, Ai F, Zhu G, Wang F (2018) Upconversion in nanostructured materials: from optical tuning to biomedical applications. Chem Asian J 13:373–385. https://doi.org/10.1002/asia.201701660

    Article  CAS  Google Scholar 

  14. Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chem Eur J 18:2335–2341. https://doi.org/10.1002/chem.201102599

    Article  CAS  Google Scholar 

  15. Kumar B, Rathnam VSS, Kundu S, Saxena N, Banerjee I, Giri S (2018) White-lightemitting NaYF4 nanoplatform for NIR upconversion-mediated photodynamic therapy and bioimaging. ChemNanoMat 4:583–595. https://doi.org/10.1002/cnma.201800096

    Article  CAS  Google Scholar 

  16. Liu B, Li C, Yang D, Hou Z, Ma P, Cheng Z, Lian H, Huang S, Lin J (2014) Upconversion-luminescent core/mesoporous-silica-shell-structured β-NaYF4:Yb3+,Er3+@SiO2@mSiO2 composite nanospheres: fabrication and drug-storage/release properties. Eur J Inorg Chem 1906–1913. https://doi.org/10.1002/ejic.201301460

  17. Zhang J, Liu F, Li T, He X, Wang Z (2015) Surface charge effect on the cellular interaction and cytotoxicity of NaYF4:Yb3+, Er3+@SiO2 nanoparticles. RSC Adv 5:7773–7780. https://doi.org/10.1039/C4RA11374h

    Article  CAS  Google Scholar 

  18. Liang X, Hu Y, Ma X, Wang Y, Fan J, Hu X (2014) A novel template-free and one-step method to fabricate hollow mesoporous structured upconversion luminescent NaYF4:Yb3+, Er3+ nanoparticles. Mater Lett 129:107–110. https://doi.org/10.1016/j.matlet.2014.05.049

    Article  CAS  Google Scholar 

  19. Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Micropor Mesopor Mater 125:170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

    Article  CAS  Google Scholar 

  20. Shi J-l, Hua Z-l, Zhang L-X (2004) Nanocomposites from ordered mesoporous materials. J Mater Chem 14:795–806. https://doi.org/10.1039/B315861F

    Article  CAS  Google Scholar 

  21. Xia Z, Du P (2010) Synthesis and upconversion luminescence properties of CaF2:Yb3+,Er3+ nanoparticles obtained from SBA-15 template. J Mater Res 25:2035–2041. https://doi.org/10.1557/JMR.2010.0255

    Article  CAS  Google Scholar 

  22. Xue YL, Wu P, Liu Y, Zhang X, Lin L, Jiang Q (2010) Highly efficient near-IR photoluminescence of Er3+ immobilized in mesoporous SBA-15. Nanoscale Res Lett 5:1952–1961. https://doi.org/10.1007/s11671-010-9732-9

    Article  CAS  Google Scholar 

  23. Liu L, Li B, Qin R, Zhao H, Ren X, Su Z (2010) Synthesis and characterization of nanoporous NaYF4:Yb3+, Tm3+@SiO2 nanocomposites. Solid State Sci 12:345–349. https://doi.org/10.1016/j.solidstatesciences.2009.11.011

    Article  CAS  Google Scholar 

  24. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036. https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  25. Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  26. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  27. de Boer JH, Linsen BG, van der Plas T, Zondervan GJ (1965) Studies on pore systems in catalysts: VII. Description of the pore dimensions of carbon blacks by the t method. J Catal 4:649–653. https://doi.org/10.1016/0021-9517(65)90264-2

    Article  Google Scholar 

  28. Lippens BC, Boer JH (1965) Studies on pore systems in catalysts. V. The t method. J Catal 4:319–323. https://doi.org/10.1016/0021-9517(65)90307-6

    Article  CAS  Google Scholar 

  29. Manzani D, Montesso M, Mathias CF, Krishanaiah KV, Ribeiro SJL, Nalin M (2016) Visible up-conversion and near-infrared luminescence of Er3+/Yb3+ co-doped SbPO4-GeO2 glasses. Opt Mater 57:71–78. https://doi.org/10.1016/j.optmat.2016.04.019

    Article  CAS  Google Scholar 

  30. dos Santos PV, de Araujo MT, Gouveia-Neto AS, Medeiros Neto JA, Sombra ASB (1998) Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass. Appl Phys Lett 73:578–580. https://doi.org/10.1063/1.121861

    Article  Google Scholar 

  31. Oliveira AS, de Araujo MT, Gouveia-Neto AS, Sombra ASB, Medeiros Neto JA, Aranha N (1998) Upconversion fluorescence spectroscopy of Er3+/Yb3+-doped heavy metal Bi2O3–Na2O–Nb2O5–GeO2 glass. J Appl Phys 83:604–606. https://doi.org/10.1063/1.366726

    Article  CAS  Google Scholar 

  32. Oliveira AS, de Araujo MT, Gouveia-Neto AS, Medeiros Neto JA, Sombra ASB, Messaddeq Y (1998) Frequency upconversion in Er3+/Yb3+-codoped chalcogenide glass. Appl Phys Lett 72:753–755. https://doi.org/10.1063/1.120884

    Article  CAS  Google Scholar 

  33. Jardim AAMLF, Bacani R, Camilo FF, Fantini MCA, Martins TS (2016) SBA-15:TiO2 nanocomposites. I. Synthesis with ionic liquids and properties. Micropor Mesopor Mater 228:37–44. https://doi.org/10.1016/j.micromeso.2016.03.012

    Article  CAS  Google Scholar 

  34. Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR (2004) Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater 16:1244–1251. https://doi.org/10.1021/cm031124o

    Article  CAS  Google Scholar 

  35. Wei Y, Lu F, Zhang X, Chen D (2006) Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb,Er nanoplates. Chem Mater 18:5733–5737. https://doi.org/10.1021/cm0606171

    Article  CAS  Google Scholar 

  36. Yang D, Chen D, He H, Pan Q, Xiao Q, Qiu J, Dong G (2016) Controllable phase transformation and mid-infrared emission from Er3+-doped hexagonal-/cubic-NaYF4 nanocrystals. Sci Rep 6:29871. https://doi.org/10.1038/srep29871

    Article  CAS  Google Scholar 

  37. Rayati S, Nafarieh P, Amini M (2018) The synthesis, characterization and catalytic application of manganese porphyrins bonded to novel modified SBA-15. N J Chem 42:6464–6471. https://doi.org/10.1039/c8nj00743h

    Article  CAS  Google Scholar 

  38. Shin HJ, Ryoo R, Kruk M, Jaroniec M (2001) Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chem Commun 4:349–350. https://doi.org/10.1039/B009762O

    Article  Google Scholar 

  39. Kruk M, Jaroniec M, Joo SH, Ryoo R (2003) Characterization of regular and plugged SBA-15 silicas by using adsorption and inverse carbon replication and explanation of the plug formation mechanism. J Phys Chem B 107:2205–2213. https://doi.org/10.1021/jp0271514

    Article  CAS  Google Scholar 

  40. Vieira CO, Grice JE, Roberts MS, Haridass IN, Dutra Duque M, Lopes PS, Leite-Silva VR, Martins TS (2019) ZnO:SBA-15 nanocomposites for potential use in sunscreen: preparation, properties, human skin penetration and toxicity. Skin Pharm Physiol 32:32–42. https://doi.org/10.1159/000491758

    Article  CAS  Google Scholar 

  41. Rosenholm JM, Lindén M (2007) Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chem Mater 19:5023–5034. https://doi.org/10.1021/cm071289n

    Article  CAS  Google Scholar 

  42. Galarneau A, Cambon H, Di Renzo F, Fajula F (2001) True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17:8328–8335. https://doi.org/10.1021/la0105477

    Article  CAS  Google Scholar 

  43. Pisarski WA, Pisarska J, Lisiecki R, Ryba-Romanowski W (2016) Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors. Sens Actuators A Phys 252:54–58. https://doi.org/10.1016/j.sna.2016.11.010

    Article  CAS  Google Scholar 

  44. dos Santos PV, de Araújo MT, Gouveia-Neto AS, Medeiros Neto JA, Sombra ASB (1998) Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass. Appl Phys Lett 73:578–580. https://doi.org/10.1063/1.121861

    Article  Google Scholar 

  45. Vetrone F, Naccache R, Zamarrón A, de la Fuente AJ, Sanz-Rodríguez F, Maestro LM, Rodríguez EM, Jaque D, Solé JG, Capobianco JA (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254–3258. https://doi.org/10.1021/nn100244a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor M.C.A Fantini, Dr. A.C.F. Silveira, and Mr. T.M. Germano from LCr-IF-USP for XRD and SA-XRD measurements and BSc C.M. Fukumoto, MSc. R.M. da Silva, and Dr. R. Rodrigues from NIPE-UNIFESP for SEM, EDS, and NAI measurements. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and for the scholarship granted to DYT graduate student. This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (process number: 465572/2014-6), the FAPESP (process number 2014/50869-6 and 17/17844-8), and CAPES (Education Ministry) (process number 23038.000776/201754) via the projects of the National Institute for Science and Technology on Organic Electronics (INEO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso Molina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takamori, D.Y., Alves, R.T., Gouveia-Neto, A.d.S. et al. Synthesis and luminescence investigation of SBA-15/NaYF4:Yb/Er composites. J Sol-Gel Sci Technol 97, 167–177 (2021). https://doi.org/10.1007/s10971-020-05423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05423-8

Keywords

Navigation