Preparation of mesoporous silica thin films at low temperature: a comparison of mild structure consolidation and template extraction procedures

Abstract

Mesoporous thin films (MTFs) displaying high surface area and controlled porosity constitute interesting materials for a plethora of applications in optics and electronics. A critical aspect in MTF processing is template removal that usually consists in thermal treatment at 350 °C, which consolidates the oxide film but might change the pore features. In addition, the use of such high temperature must be avoided when organic functionalities are to be preserved, or in the case of film deposition on polymeric substrates. Here we present and compare five different methods to consolidate silica MTF (SMTF) in mild conditions, at a maximum processing temperature of 130 °C. Conditions, such as duration of the thermal treatment, vacuum conditions, exposure to acidic and alkaline media, were systematically explored and the resulting films were analyzed by optical microscopy, focused ion beam, scanning electron microscopy, ellipsometry, and infrared spectroscopy. The optimized conditions leading to accessible mesopores and a stable oxide structure that can be used as a mesoporous perm-selective electrode are discussed.

Highlights

  • Soft template extraction methods from mesoporous silica thin films onto Si and Au were compared.

  • These low-T treatments permit to extract ionic and non-ionic surfactants, keeping film integrity.

  • A complete analysis on template extraction, film adhesion, and mesopore size is provided.

  • Optimized 130 °C treatment followed by vacuum leads to robust frameworks with accessible mesopores.

  • Mesoporous electrodes can be used for more than 90 consecutive electrochemical cycles in aqueous solutions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Serrano E, Linares N, Garcia-Martinez J, Berenguer JR (2013) Sol-gel coordination chemistry: building catalysts from the bottom-up. ChemCatChem 5:844–860. https://doi.org/10.1002/cctc.201200938

    Article  CAS  Google Scholar 

  2. 2.

    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585. https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R3.0.CO;2

    Article  CAS  Google Scholar 

  3. 3.

    Wang J, Ma Q, Wang Y et al. (2018) New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 47:8766–8803. https://doi.org/10.1039/c8cs00658j

    Article  CAS  Google Scholar 

  4. 4.

    Wei J, Sun Z, Luo W et al. (2017) New insight into the synthesis of large-pore ordered mesoporous materials. J Am Chem Soc 139:1706–1713. https://doi.org/10.1021/jacs.6b11411

    Article  CAS  Google Scholar 

  5. 5.

    Florek J, Caillard R, Kleitz F (2017) Evaluation of mesoporous silica nanoparticles for oral drug delivery-current status and perspective of MSNs drug carriers. Nanoscale 9:15252–15277. https://doi.org/10.1039/c7nr05762h

    Article  CAS  Google Scholar 

  6. 6.

    Walcarius A (2018) Silica-based electrochemical sensors and biosensors: recent trends. Curr Opin Electrochem 10:88–97. https://doi.org/10.1016/j.coelec.2018.03.017

    Article  CAS  Google Scholar 

  7. 7.

    Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42:4198–4216. https://doi.org/10.1039/c3cs35377j

    Article  CAS  Google Scholar 

  8. 8.

    Laskowski Ł, Laskowska M, Vila N et al. (2019) Mesoporous silica-based materials for electronics-oriented applications. Molecules 24:2395. https://doi.org/10.3390/molecules24132395

    Article  CAS  Google Scholar 

  9. 9.

    Etienne M, Zhang L, Vilà N, Walcarius A (2015) Mesoporous materials-based electrochemical enzymatic biosensors. Electroanalysis 27:2028–2054. https://doi.org/10.1002/elan.201500172

    Article  CAS  Google Scholar 

  10. 10.

    Vilà N, Walcarius A (2015) Electrochemical response of vertically-aligned, ferrocene-functionalized mesoporous silica films: effect of the supporting electrolyte. Electrochim Acta. https://doi.org/10.1016/j.electacta.2015.02.169

    Article  Google Scholar 

  11. 11.

    Grosso D, Balkenende AR, Albouy PA et al. (2001) Two-dimensional hexagonal mesoporous silica thin films prepared from block copolymers: detailed characterization and formation mechanism. Chem Mater 13:1848–1856. https://doi.org/10.1021/cm001225b

    Article  CAS  Google Scholar 

  12. 12.

    Herregods SJF, Mertens M, Van Havenbergh K et al. (2013) Controlling pore size and uniformity of mesoporous titania by early stage low temperature stabilization. J Colloid Interface Sci 391:36–44. https://doi.org/10.1016/j.jcis.2012.07.098

    Article  CAS  Google Scholar 

  13. 13.

    Beck JS, Vartuli JC, Roth WJ et al. (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 10834–10843. https://doi.org/10.1021/ja00053a020

  14. 14.

    Kresge CT, Leonowicz ME, Roth WJ et al. (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  15. 15.

    Di Renzo F, Cambon H, Dutartre R (1997) A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Mater 10:283–286. https://doi.org/10.1016/S0927-6513(97)00028-X

    Article  Google Scholar 

  16. 16.

    Clark T, Ruiz JD, Fan H et al. (2000) A new application of UV-ozone treatment the preparation of substrate-supported, mesoporous thin films. Chem Mater 12:3879–3884. https://doi.org/10.1021/cm000456f

    Article  CAS  Google Scholar 

  17. 17.

    Hozumi A, Yokogawa Y, Kameyama T et al. (2000) Photocalcination of mesoporous silica films using vacuum ultraviolet light. Adv Mater 12:985–987. https://doi.org/10.1002/1521-4095(200006)12:13<985::AID-ADMA985>3.0.CO;2-#

    Article  CAS  Google Scholar 

  18. 18.

    Huang J, Ichinose I, Kunitake T, Nakao A (2002) Preparation of nanoporous Titania films by surface sol-gel process accompanied by low-temperature oxygen plasma treatment. Langmuir 18:9048–9053. https://doi.org/10.1021/la026091q

    Article  CAS  Google Scholar 

  19. 19.

    Zhang J, Palaniappan A, Su X, Tay FEH (2005) Mesoporous silica thin films prepared by argon plasma treatment of sol–gel-derived precursor. Appl Surf Sci 245:304–309. https://doi.org/10.1016/j.apsusc.2004.10.049

    Article  CAS  Google Scholar 

  20. 20.

    Horiuchi Y, Ura H, Kamegawa T et al. (2011) Low-temperature synthesis of highly hydrophilic Ti-containing mesoporous silica thin films on polymer substrates by photocatalytic removal of structure-directing agents. J Mater Chem 21:236. https://doi.org/10.1039/c0jm01404d

    Article  CAS  Google Scholar 

  21. 21.

    Soler-Illia GJAA, Crepaldi EL, Grosso D et al. (2002) Structural control in self-standing mesostructured silica oriented membranes and xerogels. Chem Commun 2298–2299

  22. 22.

    Cagnol F, Grosso D, Soler-Illia GJAA (2003) Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of amodulable steady state. J Mater Chem 13:61–66

    Article  CAS  Google Scholar 

  23. 23.

    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, London

  24. 24.

    Nasir T, Zhang L, Vilà N, et al. (2016) Electrografting of 3-aminopropyltriethoxysilane on a glassy carbon electrode for the improved adhesion of vertically oriented mesoporous silica thin films. Langmuir 32. https://doi.org/10.1021/acs.langmuir.6b00798

  25. 25.

    Soler-Illia GJAA, Innocenzi P (2006) Mesoporous hybrid thin films: the physics and chemistry beneath. Chemistry 12:4478–4494

    Article  CAS  Google Scholar 

  26. 26.

    Grosso D, Cagnol F, Soler-Illia GJDAA. et al. (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14. https://doi.org/10.1002/adfm.200305036

  27. 27.

    Soler-Illia GJAA, Angelomé PC, Fuertes MC. et al. (2011) Mesoporous hybrid and nanocomposite thin films. A sol-gel toolbox to create nanoconfined systems with localized chemical properties. J Sol-Gel Sci Technol 57:299–312. https://doi.org/10.1007/s10971-010-2172-2

    Article  CAS  Google Scholar 

  28. 28.

    Soler-Illia GJDAA, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102. https://doi.org/10.1021/cr0200062

  29. 29.

    Crepaldi EL, Soler-Illia GJDAA, Grosso D, Sanchez C (2003) Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. New J Chem 27. https://doi.org/10.1039/b205497n

  30. 30.

    Crepaldi EL, Soler-Illia GJDAA, Grosso D. et al. (2003) Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J Am Chem Soc 125. https://doi.org/10.1021/ja030070g

  31. 31.

    Soler-Illia GJAA, Angelomé PC, Fuertes MC et al. (2012) Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 4:2549–2566. https://doi.org/10.1039/c2nr11817c

    Article  CAS  Google Scholar 

  32. 32.

    Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A 173:1–38. https://doi.org/10.1016/S0927-7757(00)00556-2

    Article  CAS  Google Scholar 

  33. 33.

    Mogilnikov KP, Baklanov MR (2002) Determination of Young’s modulus of porous low-k films by ellipsometric porosimetry. Electrochem Solid-State Lett 5:F29. https://doi.org/10.1149/1.1517771

    Article  CAS  Google Scholar 

  34. 34.

    Fuertes MC, Colodrero S, Lozano G et al. (2008) Sorption properties of mesoporous multilayer thin films. J Phys Chem C 112:3157–3163. https://doi.org/10.1021/jp710612y

    Article  CAS  Google Scholar 

  35. 35.

    Doshi DA, Huesing NK, Lu M et al. (2000) Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science 290:107–111. https://doi.org/10.1126/science.290.5489.107

    Article  CAS  Google Scholar 

  36. 36.

    Soler-Illia GJAA, Azzaroni O (2011) Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40. https://doi.org/10.1039/c0cs00208a

  37. 37.

    Huo Q, Margolese DI, Stucky GD (1996) Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater 8:1147–1160. https://doi.org/10.1021/cm960137h

    Article  CAS  Google Scholar 

  38. 38.

    Boissiere C, Larbot A, Prouzet E (2000) Synthesis of mesoporous MSU-X materials using. Chem Mater 12:1937–1940. https://doi.org/10.1021/cm001012m

    Article  CAS  Google Scholar 

  39. 39.

    Gonzalez Solveyra E, Fuertes MC, Soler-Illia GJAA, Angelomé PC (2017) 2D-SAXS in situ measurements as a tool to study elusive mesoporous phases: the case of p6mm TiO2. J Phys Chem C 121:3623–3631. https://doi.org/10.1021/acs.jpcc.6b12112

    Article  CAS  Google Scholar 

  40. 40.

    Ichinose I, Kunitake T (2002) Wrapping and inclusion of organic molecules with ultrathin, amorphous metal oxide films. Chem Rec 2:339–351. https://doi.org/10.1002/tcr.10032

    Article  CAS  Google Scholar 

  41. 41.

    Fischereder A, Martínez-Ricci M, Wolosiuk A et al. Mesoporous ZnS thin films prepared by a nanocasting route. Chem Mater 24:1837–1845. https://doi.org/10.1021/cm300395m

  42. 42.

    Tompkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry. A user’s guide, 1st edn. Wiley-Interscience, New York

  43. 43.

    Boissiere C, Grosso D, Lepoutre S et al. (2005) Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 21:12362–12371. https://doi.org/10.1021/la050981z

    Article  CAS  Google Scholar 

  44. 44.

    Fattakhova-Rohlfing D (2007) Ion-permselective pH-switchable mesoporous silica thin layers. Chem Mater 19:1640–1647. https://doi.org/10.1021/cm062389g

    Article  CAS  Google Scholar 

  45. 45.

    Calvo A, Fuertes MC, Yameen B et al. (2010) Nanochemistry in confined environments: polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films. Langmuir 26:5559–5567. https://doi.org/10.1021/la9038304

    Article  CAS  Google Scholar 

  46. 46.

    Malfatti L, Bellino MG, Innocenzi P, Soler-Illia GJAA (2009) One-pot route to produce hierarchically porous titania thin films by controlled self-assembly, swelling, and phase separation. Chem Mater 21:2763–2769

    Article  CAS  Google Scholar 

  47. 47.

    Thommes M, Kaneko K, Neimark AV et al. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  48. 48.

    Etienne M, Quach A, Grosso D et al. (2007) Molecular transport into mesostructured silica thin films: electrochemical monitoring and comparison between p6m, P63/mmc, and Pm3n structures. Chem Mater 19:844–856. https://doi.org/10.1021/cm0625068

    Article  CAS  Google Scholar 

  49. 49.

    Thielemann J, Girgsdies F, Schlögl R, Hess C (2011) Pore structure and surface area of silica SBA-15: influence of washing and scale-up. Beilstein J Nanotechnol 2:110–8. https://doi.org/10.3762/bjnano.2.13

    Article  CAS  Google Scholar 

  50. 50.

    Groen JC, Peffer LAA, Pérez-Ramírez J (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60:1–17. https://doi.org/10.1016/S1387-1811(03)00339-1

    Article  CAS  Google Scholar 

  51. 51.

    Gregg SJ, Sing KSW, Salzberg HW (1967) Adsorption surface area and porosity. J Electrochem Soc 114:279C. https://doi.org/10.1149/1.2426447

    Article  Google Scholar 

  52. 52.

    Soler-Illia GJAA, Crepaldi EL, Grosso D et al. (2002) Structural control in self-standing mesostructured silica oriented membranes and xerogels. Chem Commun 20:2298–2299. https://doi.org/10.1039/B207595D

    Article  Google Scholar 

  53. 53.

    Angelomé PC (2008) Films delgados mesoporosos de óxidos metálicos, mixtos e híbridos. Hacia un diseño racional de nanomaterialesfuncionales. Facultad de Ciencias Exactas y Naturales—UBA, Buenos Aires

  54. 54.

    Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319. https://doi.org/10.1016/S0022-3093(02)01637-X

    Article  CAS  Google Scholar 

  55. 55.

    Olsen JE, Shimura F (1989) Infrared reflection spectroscopy of the SiO2-silicon interface. J Appl Phys 66:1353–1358. https://doi.org/10.1063/1.344435

    Article  CAS  Google Scholar 

  56. 56.

    Alberti S, Steinberg PY, Giménez G et al. (2019) Chemical stability of mesoporous oxide thin film electrodes under electrochemical cycling: from dissolution to stabilization. Langmuir 35:6279–6287. https://doi.org/10.1021/acs.langmuir.9b00224

    Article  CAS  Google Scholar 

  57. 57.

    Mazer J, Walther J (1994) Dissolution kinetics of silica glass as a function of pH between 40 and 85 °C. J Non-Cryst Solids 170:32–45. https://doi.org/10.1016/0022-3093(94)90100-7

    Article  CAS  Google Scholar 

  58. 58.

    Niibori Y, Kunita M, Tochiyama O, Chida T (2000) Dissolution rates of amorphous silica in highly alkaline solution. J Nucl Sci Technol 37:349–357. https://doi.org/10.1080/18811248.2000.9714905

    Article  CAS  Google Scholar 

  59. 59.

    Gorrepati EA, Wongthahan P, Raha S, Fogler HS (2010) Silica precipitation in acidic solutions: mechanism, pH effect, and salt effect. Langmuir 26:10467–10474. https://doi.org/10.1021/la904685x

    Article  CAS  Google Scholar 

  60. 60.

    Lange P, Schnakenberg U, Ullerich S, Schliwinski HJ (1990) Disorder in vitreous SiO2: the effect of thermal annealing on structural properties. J Appl Phys 68:3532–3537. https://doi.org/10.1063/1.346312

    Article  CAS  Google Scholar 

  61. 61.

    Lange P, Windbracke W (1989) Characterization of thermal and deposited thin oxide layers by longitudinal optical-transverse optical excitation in fourier transform IR transmission measurements. Thin Solid Films 174:159–164. https://doi.org/10.1016/0040-6090(89)90885-7

    Article  CAS  Google Scholar 

  62. 62.

    Lange P (1989) Evidence for disorder-induced vibrational mode coupling in thin amorphous SiO2 films. J Appl Phys 66:201–204. https://doi.org/10.1063/1.344472

    Article  CAS  Google Scholar 

  63. 63.

    Shimizu W, Murakami Y (2010) Microporous silica thin films with low refractive indices and high Young’s modulus. ACS Appl Mater Interfaces 2:3128–3133. https://doi.org/10.1021/am100612g

    Article  CAS  Google Scholar 

  64. 64.

    Gazoni RM, Bellino MG, Cecilia Fuertes M et al. (2017) Designed nanoparticle–mesoporous multilayer nanocomposites as tunable plasmonic–photonicarchitectures for electromagnetic field enhancement. J Mater Chem C. https://doi.org/10.1039/C6TC05195B

    Article  Google Scholar 

  65. 65.

    Robertson C, Lodge AW, Basa P et al. (2016) Surface modification and porosimetry of vertically aligned hexagonal mesoporous silica films. RSC Adv 6:113432–113441. https://doi.org/10.1039/C6RA23059H

    Article  CAS  Google Scholar 

  66. 66.

    Fuertes MC (2009) Materiales funcionales multiescala basados en películas de óxidos mesoporosos. UNSAM, San Martín

  67. 67.

    Brinker CJ, Lu Y, Ganguli R et al. (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389:364–368. https://doi.org/10.1038/38699

    Article  CAS  Google Scholar 

  68. 68.

    Cheng W, Dong S, Wang E (2003) Synthesis and self-assembly of cetyltrimethylammonium bromide-capped gold nanoparticles. Langmuir 19:9434–9439. https://doi.org/10.1021/la034818k

    Article  CAS  Google Scholar 

  69. 69.

    Smith DK, Korgel BA (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644–649. https://doi.org/10.1021/la703625a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by INTI, INS-UNSAM, and Agencia Nacional de Promoción Científica y Tecnológica (Projects PICT-2015-3526, PICT 2017-4651, and PICT-2018-04236). Dr. M.C. Fuertes is gratefully thanked for the EPAs measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Galo J. A. A. Soler-Illia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giménez, G., Ybarra, G. & Soler-Illia, G.J.A.A. Preparation of mesoporous silica thin films at low temperature: a comparison of mild structure consolidation and template extraction procedures. J Sol-Gel Sci Technol (2020). https://doi.org/10.1007/s10971-020-05410-z

Download citation

Keywords

  • Mesoporous thin films
  • Soft processing
  • Sol–gel condensation
  • Template extraction