Skip to main content

Advertisement

Log in

Synthesis and electrocatalytic properties of LaFe1-xZnxO3 perovskites

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, perovskite-type oxides of general formula LaFe1-xZnxO3 (0 ≤ x ≤ 0.3) prepared by a sol–gel route were investigated as electrocatalysts for the oxygen evolution reaction (OER) in alkaline KOH solutions. X-ray diffraction analysis of samples indicates that the pure cubic structure was obtained for composition lower than x = 0.2. The OER studies indicate that substitution of iron by zinc increases the electrocatalytic activity of the resulting material significantly. The highest activity was achieved for x = 0.1, whereas the obtained current density was 9.02 mA cm−2 at 0.66 V, which is approximately three times higher than that of the base oxide. The Tafel slopes values for OER on each oxide in 1 M KOH are found to be ~89, 52, and 64 mV dec−1 for LaFeO3, LaFe0.9Zn0.1O3, and LaFe0.8Zn0.2O3, respectively. The stability of LaFe0.9Zn0.1O3 electrode is studied in the process of 1000 successive cycles at a current density of 10 mA.cm−2 of the OER. A small change in overpotential was found, ranged between 11 and 19 mV, indicating clearly its long electrochemical durability. These results suggest clearly that LaFe0.9Zn0.1O3 electrode is a promising anode material for the OER in water electrolysis.

Linear sweep voltammetry of LaFe1-xZnxO3 electrodes in 1 M KOH, at a scan rate of 50 mV/s; inset shows the OER current density at 0.66 V vs. Hg/HgO.

Highlights

  • Perovskite-type oxides LaFe1-x ZnxO3 were used for oxygen evolution reaction.

  • The highest elctrode activity performance is acheived with LaFe0.9Zn0.1O3 at 0.66 V.

  • The best performing electrode exhibits a relatively excellent stability after 1000 continuous cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sankannavar R, Sarkar A (2018) The electrocatalysis of oxygen evolution reaction on La1-xCaxFeO3-δ perovskites in alkaline solution. Int J Hydrog Energy 43:4682–4690. https://doi.org/10.1016/j.ijhydene.2017.08.092

    Article  CAS  Google Scholar 

  2. Carmo M, Fritz DL, Mergel J, Stolten DA (2013) comprehensive review on PEM water electrolysis. Int J Hydrog Energy 38:4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151

    Article  CAS  Google Scholar 

  3. Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37:1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173

    Article  CAS  Google Scholar 

  4. Sadooghi P, Rauch R (2015) Experimental and modeling study of hydrogen production from catalytic steam reforming of methane mixture with hydrogen sulfide. Int J Hydrog Energy 40:10418–10426. https://doi.org/10.1016/j.ijhydene.2015.06.143

    Article  CAS  Google Scholar 

  5. Pletcher D, Li X (2011) Prospects for alkaline zero gap water electrolysers for hydrogen production. Int J Hydrog Energy 36:15089–15104. https://doi.org/10.1016/j.ijhydene.2011.08.080

    Article  CAS  Google Scholar 

  6. Lyons MEG, Brandon MP (2008) The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution part II-cobalt. Int J Electrochem Sci 3:1425–1462

    CAS  Google Scholar 

  7. Trotochaud L, Boettcher SW (2014) Precise oxygen evolution catalysts: status and opportunities. Scr Mater 74:25–32. https://doi.org/10.1016/j.scriptamat.2013.07.019

    Article  CAS  Google Scholar 

  8. Wang CC, Cheng Y, Ianni E, Jiang SP, Lin B (2017) A highly active and stableLa0. 5Sr0. 5Ni0. 4Fe0. 6O3-δ perovskite electrocatalyst for oxygen evolution reaction in alkaline media. Electrochim Acta 246:997–1003. https://doi.org/10.1016/j.electacta.2017.06.161

    Article  CAS  Google Scholar 

  9. Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW (2015) Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles. Chem Mater 27:7549–7558. https://doi.org/10.1021/acs.chemmater.5b03148

    Article  CAS  Google Scholar 

  10. Cheng J, Zhang H, Ma H, Zhong H, Zou Y (2009) Preparation of Ir0. 4Ru0. 6MoxOy for oxygen evolution by modified Adams fusion method. Int J Hydrog Energy 34:6609–6613. https://doi.org/10.1016/j.ijhydene.2009.06.061

    Article  CAS  Google Scholar 

  11. Ramsundar RM, Debgupta J, Pillai VK, Joy PA (2015) Co3O4 nanorods efficient non-noble metal electrocatalyst for oxygen evolution at neutral pH. Electrocatalysis 6:331–340. https://doi.org/10.1007/s12678-015-0263-0

    Article  CAS  Google Scholar 

  12. Bockris JO, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131:290–302. https://doi.org/10.1149/1.2115565

    Article  CAS  Google Scholar 

  13. Atta NF, Galal A, Ali SM (2012) The catalytic activity of ruthenates ARuO3 (A=Ca, Sr, or Ba) for the hydrogen evolution reaction in acidic medium. Int J Electrochem Sci 7:725–746.

    CAS  Google Scholar 

  14. Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S (2015) Covalency-reinforced oxygen evolution reaction catalyst. Nat Commun 6:8249. https://doi.org/10.1038/ncomms9249

    Article  Google Scholar 

  15. Takashima T, Ishikawa K, Irie H (2016) Efficient oxygen evolution on hematite at neutral pH enabled by proton-coupled electron transfer. Chem Commun 52:14015–14018. https://doi.org/10.1039/C6CC08379J

    Article  CAS  Google Scholar 

  16. Takashima T, Ishikawa K, Irie H (2017) Enhancement of oxygen evolution activity of Ruddlesden-Popper-type strontium ferrite by stabilizing Fe4+. J Mater Sci Chem Eng 5:129–141. https://doi.org/10.4236/msce.2017.54005

    Article  CAS  Google Scholar 

  17. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385. https://doi.org/10.1126/science.1212858

    Article  CAS  Google Scholar 

  18. Andoulsi-Fezei R, Horchani-Naifer K, Férid M (2016) Influence of zinc incorporation on the structure and conductivity of lanthanum ferrite. Ceram Int 42:1373–1378. https://doi.org/10.1016/j.ceramint.2015.09.077

    Article  CAS  Google Scholar 

  19. Yang M, Li Y, Yu Y, Liu X, Shi Z, Xing Y (2018) Self-assembly of three-dimensional zinc-doped NiCo2O4 as efficient electrocatalysts for oxygen evolution reaction. Chem Eur J 24:13002–13008. https://doi.org/10.1002/chem.201802325

    Article  CAS  Google Scholar 

  20. Huang S, Qin H, Song P, Liu X, Li L, Zhang R, Hu J, Yan H, Jiang M (2007) The formaldehyde sensitivity of LaFe1-xZnxO3-based gas sensor. J Mater Sci 42:9973–9977. https://doi.org/10.1007/s10853-007-1991-1

    Article  CAS  Google Scholar 

  21. Dong S, Xu K, Tian G (2009) Photocatalytic activities of LaFe1-xZnxO3 nanocrystals prepared by sol–gel auto-combustion method. J Mater Sci 44:2548–2552. https://doi.org/10.1007/s10853-009-3332-z

    Article  CAS  Google Scholar 

  22. Bhat I, Husain S, Khan W, Patil SI (2013) Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO3 synthesized through sol–gel auto-combustion process. Mater Res Bull 48:4506–4512. https://doi.org/10.1016/j.materresbull.2013.07.028

    Article  CAS  Google Scholar 

  23. Singh SP, Samuel S, Tiwari SK, Singh RN (1996) Preparation of thin Co3O4 films on Ni and their electrocatalytic surface properties towards oxygen evolution. Int J Hydrog Energy 21:171–178. https://doi.org/10.1016/0360-3199(95)00062-3

    Article  CAS  Google Scholar 

  24. Tiwari SK, Singh SP, Singh RN (1996) Effects of Ni, Fe, Cu, and Cr substitutions for La0. 8Sr0.2CoO3 on electrocatalytic properties for oxygen evolution. J Electrochem Soc 143:1505–1510. https://doi.org/10.1149/1.1836670

    Article  CAS  Google Scholar 

  25. Singh RN, Madhu, Awasthi R, Tiwari SK (2009) Iron molybdates as electrocatalysts for O2 evolution reaction in alkaline solutions. Int J Hydrog Energy 34:4693–4700. https://doi.org/10.1016/j.ijhydene.2009.04.006

    Article  CAS  Google Scholar 

  26. Egelund S, Caspersen M, Nikiforov A, Møller P (2016) Manufacturing of a LaNiO3 composite electrode for oxygen evolution in commercial alkaline water electrolysis. Int J Hydrog Energy 41:10152–10160. https://doi.org/10.1016/j.ijhydene.2016.05.013

    Article  CAS  Google Scholar 

  27. Singh RN, Madhu, Awasthi R, Sinha ASK (2009) Electrochemical characterization of a new binary oxide of Mo with Co for O2 evolution in alkaline solution. Electrochim Acta 54:3020–3025. https://doi.org/10.1016/j.electacta.2008.12.012

    Article  CAS  Google Scholar 

  28. Singh RN, Singh JP, Lal B, Thomas MJK, Bera S (2006) New NiFe2-xCrxO4 spinel films for O2 evolution in alkaline solutions. Electrochim Acta 51:5515–5523. https://doi.org/10.1016/j.electacta.2006.02.028

    Article  CAS  Google Scholar 

  29. She S, Yu J, Tang W, Zhu Y, Chen Y, Sunarso J, Zhou W, Shao Z (2018) Systematic study of oxygen evolution activity and stability on La1–xSrxFeO3-δ perovskite electrocatalysts in alkaline media. Acs Appl Mater Interfaces 10:11715–11721. https://doi.org/10.1021/acsami.8b00682

    Article  CAS  Google Scholar 

  30. Omari E, Omari M (2019) Cu-doped GdFeO3 perovskites as electrocatalysts for the oxygen evolution reaction in alkaline media. Int J Hydrog Energy 44(54):28769–28779. https://doi.org/10.1016/j.ijhydene.2019.09.088

    Article  CAS  Google Scholar 

  31. Driess M, Pfrommer J, Azarpira A, Steigert A, Olech K, Menezes P, Duarte RF, Liao X, Wilks RG, Bär M, Schedel-Niedrig T (2016) Superiorly active and long-term stable nickel-based electrocatalysts for water oxidation in alkaline media based on the ZnO:Ni system. ChemCatChem 9(4):672–676. https://doi.org/10.1002/cctc.201600922

    Article  CAS  Google Scholar 

  32. Menezes PW, Indra A, Bergmann A, Chernev P, Walter C, Dau H, Strasser P, Driess M (2016) Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water. J Mater Chem A 4:10014–10022. https://doi.org/10.1039/C6TA03644A

    Article  CAS  Google Scholar 

  33. Goux A, Pauporté T, Lincot D (2006) Oxygen reduction reaction on electrodeposited zinc oxide electrodes in KCl solution at 70°C. Electrochim Acta 51:3168–3172. https://doi.org/10.1016/j.electacta.2005.09.005

    Article  CAS  Google Scholar 

  34. Sankannavar R, Sandeep KC, Kamath S, Suresh AK, Sarkar A (2018) Impact of strontium-substitution on oxygen evolution reaction of lanthanum nickelates in alkaline solution. J Electrochem Soc 165:J3236–J3245. https://doi.org/10.1149/2.0301815jes

    Article  CAS  Google Scholar 

  35. Morimitsu M, Tamura H, Matsunaga M, Otogawa R (2000) Polarization behaviour and lifetime of IrO2-Ta2O5-SnO2/Ti anodes in p-phenolsulfonic acid solutions for tin plating. J Appl Electrochem 30(4):511–514.

    Article  CAS  Google Scholar 

  36. Zhen-Hua Z, Wei S, Waqas QZ, Li-Mei C, Ji Y (2018) Highly active and stable synergistic Ir–IrO2 electro-catalyst for oxygen evolution reaction. Chem Eng Comm 205(7):966–974. https://doi.org/10.1080/00986445.2018.1423970

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the directorate general of scientific research and technological development DGRSDT of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Omari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omari, E., Omari, M. Synthesis and electrocatalytic properties of LaFe1-xZnxO3 perovskites. J Sol-Gel Sci Technol 96, 219–225 (2020). https://doi.org/10.1007/s10971-020-05379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05379-9

Keywords

Navigation