Sharmin, Zafar, F (2012) Polyurethane: an introduction. In: Sharmin, Zafar, F (eds) Polyurethane. Intech Open, London, pp 3–16
Cornille A, Auvergne R, Figovsky O et al. (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552. https://doi.org/10.1016/j.eurpolymj.2016.11.027
CAS
Article
Google Scholar
Akindoyo JO, Beg MDH, Ghazali S et al. (2016) Polyurethane types, synthesis and applications—a review. RSC Adv 6:114453–114482. https://doi.org/10.1039/C6RA14525F
CAS
Article
Google Scholar
Biesmans G (2010) The global polyurethane market. In: Randall D, Lee S (eds) The Huntsmann polyurethanes book. John Wiley & Sons, Everberg, pp 9–22
Google Scholar
Sanchez C, Rozes L, Ribot F et al. (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chim 13:3–39. https://doi.org/10.1016/j.crci.2009.06.001
CAS
Article
Google Scholar
Bello D, Herrick CA, Smith TJ et al. (2007) Skin exposure to isocyanates: reasons for concern. Environ Health Perspect 115:328–335. https://doi.org/10.1289/ehp.9557
CAS
Article
Google Scholar
Kathalewar MS, Joshi PB, Sabnis AS, Malshe VC (2013) Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv 3:4110. https://doi.org/10.1039/c2ra21938g
CAS
Article
Google Scholar
Blattmann H, Fleischer M, Bähr M, Mülhaupt R (2014) Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. Macromol Rapid Commun 35:1238–1254. https://doi.org/10.1002/marc.201400209
CAS
Article
Google Scholar
Maisonneuve L, Lamarzelle O, Rix E et al. (2015) Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115:12407–12439. https://doi.org/10.1021/acs.chemrev.5b00355
CAS
Article
Google Scholar
Bossion A, Jones GO, Taton D et al. (2017) Non-Isocyanate polyurethane soft nanoparticles obtained by surfactant-assisted interfacial polymerization. Langmuir 33:1959–1968. https://doi.org/10.1021/acs.langmuir.6b04242
CAS
Article
Google Scholar
Rockström J, Schellnhuber HJ, Hoskins B et al. (2016) The world’s biggest gamble. Earth’s Futur 4:465–470. https://doi.org/10.1002/2016EF000392
Article
Google Scholar
Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley, Chichester, UK
Duraccio V, Gnoni MG, Elia V (2015) Carbon capture and reuse in an industrial district: a technical and economic feasibility study. J CO2 Util 10:23–29. https://doi.org/10.1016/j.jcou.2015.02.004
CAS
Article
Google Scholar
Beniah G, Uno BE, Lan T et al. (2017) Tuning nanophase separation behavior in segmented polyhydroxyurethane via judicious choice of soft segment. Polymer 110:218–227. https://doi.org/10.1016/j.polymer.2017.01.017
CAS
Article
Google Scholar
Beniah G, Heath WH, Torkelson JM (2017) Functionalization of hydroxyl groups in segmented polyhydroxyurethane eliminates nanophase separation. J Polym Sci Part A Polym Chem 55:3347–3351. https://doi.org/10.1002/pola.28722
CAS
Article
Google Scholar
Pan WC, Lin C-H, Dai SA (2014) High-performance segmented polyurea by transesterification of diphenyl carbonates with aliphatic diamines. J Polym Sci Part A Polym Chem 52:2781–2790. https://doi.org/10.1002/pola.27302
CAS
Article
Google Scholar
Figovsky O, Leykin A, Shapovalov L (2016) Non-isocyanate polyurethanes—yesterday, today and tomorrow. Alter Energy Ecol 3–4:95–108. https://doi.org/10.15518/isjaee.2016.03-04.009
CAS
Article
Google Scholar
Figovsky O, Beilin D (2013) Advanced polymer concretes and compounds. CRC Press, Boca Raton, USA
Figovsky OL, Shapovalov L, Leykin A et al. (2013) Progress in elaboration of nonisocyanate polyurethanes based on cyclic carbonates. Int Lett Chem Phys Astron 3:52–66. https://doi.org/10.18052/www.scipress.com/ILCPA.3.52
Article
Google Scholar
Pilch-Pitera B (2014) Polyurethane powder coatings containing polysiloxane. Prog Org Coat 77:1653–1662. https://doi.org/10.1016/j.porgcoat.2014.05.021
CAS
Article
Google Scholar
Henderson CMB (1987) Structural chemistry of silicates; structure, bonding and classification. Earth-Sci Rev 24:154–155. https://doi.org/10.1016/0012-8252(87)90019-5
Article
Google Scholar
Willerth S (2017) Engineering neural tissue from stem cells. Academic Press, Cambridge, Massachusetts
Liu C (2015) Development of anti-fouling coating using in marine environment. Int J Environ Monit Anal 3:373. https://doi.org/10.11648/j.ijema.20150305.30
Article
Google Scholar
Aguiar KR, Santos VG, Eberlin MN et al. (2014) Efficient green synthesis of bis(cyclic carbonate) poly(dimethylsiloxane) derivative using CO2 addition: a novel precursor for synthesis of urethanes. RSC Adv 24334–24343. https://doi.org/10.1039/c4ra03846k
Rossi de Aguiar KMF, Alves VS, Noeske P-LM et al (2019) Hybrid films based on nonisocyanate polyurethanes with antimicrobial activity. In: Materials for biomedical engineering. Elsevier, Amsterdam, pp 77–116
Simões MB, Ullah S, Hazra C et al. (2018) Eco-friendly polydimethylsiloxane-based self-supporting film containing europium-polyoxometalate: a flexible luminescent material for white light generation. J Lumin 201:384–389. https://doi.org/10.1016/j.jlumin.2018.04.041
CAS
Article
Google Scholar
Rossi de Aguiar KMF, Nascimento MV, Faccioni JL et al. (2019) Urethanes PDMS-based: functional hybrid coatings for metallic dental implants. Appl Surf Sci 484:1128–1140. https://doi.org/10.1016/j.apsusc.2019.04.058
CAS
Article
Google Scholar
Rossi de Aguiar KMF, Specht U, Maass JF et al. (2016) Surface modification by physical treatments on biomedical grade metals to improve adhesion for bonding hybrid non-isocyanate urethanes. RSC Adv 6:47203–47211. https://doi.org/10.1039/C6RA05397A
CAS
Article
Google Scholar
Rossi De Aguiar KMF, Ferreira-Neto EP, Blunk S et al. (2016) Hybrid urethanesil coatings for inorganic surfaces produced by isocyanate-free and sol-gel routes: Synthesis and characterization. RSC Adv 6:19160–19172. https://doi.org/10.1039/c5ra24331a
CAS
Article
Google Scholar
de Aguiar KR, Rischka K, Gätjen L et al. (2018) Biomimetic PDMS-hydroxyurethane terminated with catecholic moieties for chemical grafting on transition metal oxide-based surfaces. Appl Surf Sci 427:166–175. https://doi.org/10.1016/j.apsusc.2017.08.142
CAS
Article
Google Scholar
Lima EF de S, Imasato H, Cavalheiro ETG et al. (2019) Effect of hydroxyapatite nanoparticles silanization on the preparation of nanocomposites of Hydroxyurethane polydimethylsiloxane with hydroxyapatite. In: Encontro da Sociedade Brasileira de Pesquisa em Materiais—SBPMat. Sociedade Brasileira de Pesquisa em Materiais—SBPMat. Camboriú, SC, Brazil
Bayer O (1947) Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angew Chemie. https://doi.org/10.1002/ange.19470590901
Boiteux G, Cuvé L, Pascault JP (1994) Synthesis and properties of polyurethanes based on polyolefin: 3. monitoring of phase separation by dielectric relaxation spectroscopy of segmented semicrystalline polyurethane prepared in bulk by the use of emulsifiers. Polymer. https://doi.org/10.1016/0032-3861(94)90068-X
Urbano J, Manzarbetia F, Caramelo C (2008) Cholesterol embolism evaluated by polarized light microscopy after primary renal artery stent placement with filter protection. J Vasc Inter Radio 19:189–194. https://doi.org/10.1016/j.jvir.2007.10.006
Article
Google Scholar
St. John KR (2014) The use of polyurethane materials in the surgery of the spine: a review. Spine J 14:3038–3047. https://doi.org/10.1016/j.spinee.2014.08.012
Article
Google Scholar
Usman A, Zia KM, Zuber M et al. (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645. https://doi.org/10.1016/j.ijbiomac.2016.02.004
CAS
Article
Google Scholar
Korthagen NM, Brommer H, Hermsen G et al. (2019) A short-term evaluation of a thermoplastic polyurethane implant for osteochondral defect repair in an equine model. Vet J 251:105340. https://doi.org/10.1016/j.tvjl.2019.105340
CAS
Article
Google Scholar
de Vita R, Buccheri EM, Villanucci A, Pozzi M (2019) Breast reconstruction actualized in nipple-sparing mastectomy and direct-to-implant, prepectoral polyurethane positioning: early experience and preliminary results. Clin Breast Cancer 19:e358–e363. https://doi.org/10.1016/j.clbc.2018.12.015
Article
Google Scholar
Alves P, Ferreira P, Gil MH (2012) Biomedical polyurethanes-based materials. In: Polyurethane: properties, structure and applications. Nova Publishers, New York, NY, pp 1–25
Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2019) Bio-based routes to synthesize cyclic carbonates and polyamines precursors of non-isocyanate polyurethanes: a review. Eur Polym J 118:668–684. https://doi.org/10.1016/j.eurpolymj.2019.06.032
CAS
Article
Google Scholar
Tersac G (2007) Chemistry and technology of polyols for polyurethanes. Milhail Ionescu. Rapra Technology, Shrewsbury, UK. Polym Int 56:820–820. https://doi.org/10.1002/pi.2159
CAS
Article
Google Scholar
Zia KM, Anjum S, Zuber M et al. (2014) Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2014.01.073
Engels H-W, Pirkl H-G, Albers R et al. (2013) Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew Chem Int Ed 52:9422–9441. https://doi.org/10.1002/anie.201302766
CAS
Article
Google Scholar
Cypryk M, Apeloig Y (2002) Mechanism of the acid-catalyzed Si-O bond cleavage in siloxanes and siloxanols. A theoretical study. Organometallics 21:2165–2175. https://doi.org/10.1021/om011055s
CAS
Article
Google Scholar
Fugel M, Hesse MF, Pal R et al. (2018) Covalency and ionicity do not oppose each other-relationship between Si−O bond character and basicity of siloxanes. Chem Eur J 24:15275–15286. https://doi.org/10.1002/chem.201802197
CAS
Article
Google Scholar
Weinhold F, West R (2011) The nature of the silicon–oxygen bond. Organometallics 30:5815–5824. https://doi.org/10.1021/om200675d
CAS
Article
Google Scholar
Gillespie RJ, Johnson SA (1997) Study of bond angles and bond lengths in disiloxane and related molecules in terms of the topology of the electron density and its Laplacian. Inorg Chem 36:3031–3039. https://doi.org/10.1021/ic961381d
CAS
Article
Google Scholar
Kickelbick G (2006) Hybrid materials. Wiley, Chichester, UK
Whan Cho J, Il Sul K (2001) Characterization and properties of hybrid composites prepared from poly(vinylidene fluoride–tetrafluoroethylene) and SiO2. Polymer 42:727–736. https://doi.org/10.1016/S0032-3861(00)00371-2
CAS
Article
Google Scholar
Kim K-M, Adachi K, Chujo Y (2002) Polymer hybrids of functionalized silsesquioxanes and organic polymers utilizing the sol–gel reaction of tetramethoxysilane. Polymer 43:1171–1175. https://doi.org/10.1016/S0032-3861(01)00732-7
CAS
Article
Google Scholar
Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol−gel approach. Chem Mater 8:1667–1681. https://doi.org/10.1021/cm9601143
CAS
Article
Google Scholar
Pavličević J, Špírková M, Jovičić M et al. (2019) Structure—functional property relationship of aliphatic polyurethane-silica hybrid films. Prog Org Coat 126:62–74. https://doi.org/10.1016/j.porgcoat.2018.10.011
CAS
Article
Google Scholar
He Z, Gao T, Duan D, Soucek MD (2019) Effect of mixed sol-gel precursors on inorganic-organic polyurethane hybrid thermosets: DOE study. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2019.04.023
Alasti Bonab S, Moghaddas J, Rezaei M (2019) In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: characterization, cell microstructure and mechanical properties. Polymer 172:27–40. https://doi.org/10.1016/j.polymer.2019.03.050
CAS
Article
Google Scholar
Son S-J, Kim K-B, Lee Y-H et al. (2011) Effect of acrylic monomer content on the properties of waterborne poly(urethane-urea)/acrylic hybrid materials J Appl Polym Sci 124. https://doi.org/10.1002/app.35662
Athawale VD, Kulkarni MA (2009) Preparation and properties of urethane/acrylate composite by emulsion polymerization technique. Prog Org Coat 65:392–400
CAS
Article
Google Scholar
Ping T, Zhou Y, He Y et al. (2016) Preparation and characterization of yellowing resistance and low volume shrinkage of fluorinated polysiloxane urethane acrylate. Prog Org Coat 97:74–81. https://doi.org/10.1016/j.porgcoat.2016.03.023
CAS
Article
Google Scholar
Cakić SM, Valcic MD, Ristić IS et al. (2019) Waterborne polyurethane-silica nanocomposite adhesives based on castor oil-recycled polyols: effects of (3-aminopropyl)triethoxysilane (APTES) content on properties. Int J Adhes Adhes 90:22–31. https://doi.org/10.1016/j.ijadhadh.2019.01.005
CAS
Article
Google Scholar
Kreye O, Mutlu H, Meier MAR (2013) Sustainable routes to polyurethane precursors. Green Chem 15:1431. https://doi.org/10.1039/c3gc40440d
CAS
Article
Google Scholar
Joshi M, Adak B, Butola BS (2018) Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Prog Mater Sci 97:230–282. https://doi.org/10.1016/j.pmatsci.2018.05.001
CAS
Article
Google Scholar
Błażek K, Datta J (2019) Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit Rev Environ Sci Technol 49:173–211. https://doi.org/10.1080/10643389.2018.1537741
CAS
Article
Google Scholar
Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2020) Synthesis of green hybrid materials using starch and non-isocyanate polyurethanes. Carbohydr Polym 229:115535. https://doi.org/10.1016/j.carbpol.2019.115535
CAS
Article
Google Scholar
Suryawanshi Y, Sanap P, Wani V (2019) Advances in the synthesis of non-isocyanate polyurethanes. Polym Bull 76:3233–3246. https://doi.org/10.1007/s00289-018-2531-7
CAS
Article
Google Scholar
Datta J, Włoch M (2016) Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure–properties relationship and from an environmental point of view. Polym Bull 73:1459–1496. https://doi.org/10.1007/s00289-015-1546-6
CAS
Article
Google Scholar
Heilig ML (1994) United States patent office. ACM SIGGRAPH Comput Graph 28:131–134. https://doi.org/10.1145/178951.178972
Article
Google Scholar
Zabalov MV, Tiger RP, Berlin AA (2012) Mechanism of urethane formation from cyclocarbonates and amines: a quantum chemical study. Russ Chem Bull 61:518–527. https://doi.org/10.1007/s11172-012-0076-8
CAS
Article
Google Scholar
Zabalov MV, Levina MA, Krasheninnikov VG, Tiger RP (2014) Bifunctional catalysis by acetic acid in the urethane formation from cyclocarbonates and amines: quantum chemical and kinetic study. Russ Chem Bull 63:1740–1752. https://doi.org/10.1007/s11172-014-0662-z
CAS
Article
Google Scholar
Tomita H, Sanda F, Endo T (2001) Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J Polym Sci Part A Polym Chem 39:3678–3685. https://doi.org/10.1002/pola.10009
CAS
Article
Google Scholar
Günther F, Batista Simões M, Imasato H, Pereira Rodrigues-Filho U (2019) Experimental and theoretical assessment of the aminolysis of cyclo carbonate to form polyhydroxyurethanes. Mater Today Commun 21:100604. https://doi.org/10.1016/j.mtcomm.2019.100604
CAS
Article
Google Scholar
Lambeth RH, Rizvi A (2019) Mechanical and adhesive properties of hybrid epoxy-polyhydroxyurethane network polymers. Polymer 183:121881. https://doi.org/10.1016/j.polymer.2019.121881
CAS
Article
Google Scholar
Sukumaran Nair A, Cherian S, Balachandran N et al. (2019) Hybrid poly(hydroxy urethane)s: folded-sheet morphology and thermoreversible adhesion. ACS Omega 4:13042–13051. https://doi.org/10.1021/acsomega.9b00789
CAS
Article
Google Scholar
North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514. https://doi.org/10.1039/c0gc00065e
CAS
Article
Google Scholar
Martín C, Fiorani G, Kleij AW (2015) Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal 5:1353–1370. https://doi.org/10.1021/cs5018997
CAS
Article
Google Scholar
Subramaniam A, Sethuraman S (2014) Biomedical applications of nondegradable polymers. In: Kumbar SG, Laurencin CT, Deng M (eds) Natural and Synthetic Biomedical Polymers. Elsevier Science, Amsterdam, pp. 301–308
Schindler WD, Hauser PJ (2004) Chemical finishing of textiles. Woodhead Publishing Limited, Sawston, Cambridge, UK
Ben Soltane H, Roizard D, Favre E (2013) Effect of pressure on the swelling and fluxes of dense PDMS membranes in nanofiltration: an experimental study. J Memb Sci 435:110–119. https://doi.org/10.1016/j.memsci.2013.01.053
CAS
Article
Google Scholar
Stefanis E, Panayiotou C (2008) Prediction of hansen solubility parameters with a new group-contribution method. Int J Thermophys 29:568–585. https://doi.org/10.1007/s10765-008-0415-z
CAS
Article
Google Scholar
Belmares M, Blanco M, Goddard WA et al. (2004) Hildebrand and hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem 25:1814–1826. https://doi.org/10.1002/jcc.20098
CAS
Article
Google Scholar
Bahri S, Jonsson CM, Jonsson CL et al. (2011) Adsorption and surface complexation study of L-DOPA on rutile (α-TiO2) in NaCl solutions. Environ Sci Technol 45:3959–3966. https://doi.org/10.1021/es1042832
Grunwald I, Rischka K, Kast SM et al. (2009) Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins. Philos Trans R Soc A Math Phys Eng Sci 367:1727–1747. https://doi.org/10.1098/rsta.2009.0012
CAS
Article
Google Scholar
Zdyb A, Krawczyk S (2016) Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 157:197–203. https://doi.org/10.1016/j.saa.2016.01.006
CAS
Article
Google Scholar
Liu G, Wu G, Huo S et al. (2017) Synthesis and properties of non-isocyanate polyurethane coatings derived from cyclic carbonate-functionalized polysiloxanes. Prog Org Coat 112:169–175. https://doi.org/10.1016/j.porgcoat.2017.07.013
Lana SLB, Seddon AB (1998) X-ray diffraction studies of sol-gel derived ORMOSILs based on combinations of tetramethoxysilane and trimethoxysilane. J Sol-Gel Sci Technol 13:461–466. https://doi.org/10.1023/A:1008685614559
CAS
Article
Google Scholar
Moreno EM, Levy D (2000) Role of the comonomer GLYMO in ORMOSILs as reflected by nile red spectroscopy. Chem Mater 12:2334–2340. https://doi.org/10.1021/cm001048e
CAS
Article
Google Scholar
Brennan JD, Hartman JS, Ilnicki EI, Rakic M (1999) Fluorescence and NMR characterization and biomolecule entrapment studies of sol−gel-derived organic−inorganic composite materials formed by sonication of precursors. Chem Mater 11:1853–1864. https://doi.org/10.1021/cm9910097
CAS
Article
Google Scholar
Ferreira-Neto EP, Ullah S, Ysnaga OAE, Rodrigues-Filho UP (2014) Zn2+ doped ormosil–phosphotungstate hybrid films with enhanced photochromic response. J Sol-Gel Sci Technol 72:290–300. https://doi.org/10.1007/s10971-014-3404-7
CAS
Article
Google Scholar
Frenkel-Mullerad H, Ben-Knaz R, Avnir D (2014) Preserving the activity of enzymes under harsh oxidizing conditions: sol–gel entrapped alkaline phosphatase exposed to bromine. J Sol-Gel Sci Technol 69:453–456. https://doi.org/10.1007/s10971-013-3226-z
CAS
Article
Google Scholar
Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102. https://doi.org/10.1016/j.jcou.2014.12.001
CAS
Article
Google Scholar
Rubio F, Rubio J, Oteo JL (2000) Effect of TiO2 on the pore structure of SiO2-PDMS ormosils. J Sol-Gel Sci Technol. https://doi.org/10.1023/A:1008704701204
Almeida JC, Wacha A, Gomes PS et al. (2016) PDMS-SiO2-TiO2-CaO hybrid materials—cytocompatibility and nanoscale surface features. Mater Sci Eng C 64:74–86. https://doi.org/10.1016/j.msec.2016.03.071
Doro FG, Ramos AP, Schneider JF et al. (2014) Deposition of organic−inorganic hybrid coatings over 316L surgical stainless steel and evaluation on vascular cells. Can J Chem 92:987–995. https://doi.org/10.1139/cjc-2014-0034
Rodrigues-Filho UP, de Aguiar KMF, Rischka K (2017) Processo de obtenção de materiais derivados de polidimetilsiloxano (Pdms) materiais derivados de polidimetilsiloxano (Pdms) E Seus Usos. BR 102015024615-3 A2. The National Institute of Industrial Property (INPI)
Mackenzie JD, Bescher E (2003) Some factors governing the coating of organic polymers by sol-gel derived hybrid materials. J Sol-Gel Sci Technol 27:7–14. https://doi.org/10.1023/A:1022659323517
CAS
Article
Google Scholar
Wu Y, Guo P, Zhao Y et al. (2019) Hydrophobic, transparent waterborne polyurethane-polydimethylsiloxane composites prepared from aqueous sol-gel process and applied in corrosion protection. Prog Org Coat 127:231–238. https://doi.org/10.1016/j.porgcoat.2018.06.002
CAS
Article
Google Scholar
de Aguiar KMFR (2015) Síntese de hidroxiuretana-poli (dimetilsiloxano) com diferentes terminações de cadeia via fixação de CO2: síntese, caracterizações e potenciais aplicações. Universidade de São Paulo, São Paulo
Google Scholar
Ferreira-Neto EP, de Carvalho FLS, Ullah S et al. (2013) Surface structure and reactivity study of phosphotungstic acid-nitrogenated ormosils. J Sol-Gel Sci Technol 66:363–371. https://doi.org/10.1007/s10971-013-3018-5
CAS
Article
Google Scholar
Souza AL, Marques LA, Eberlin MN et al. (2012) Self-assembled hybrid films of phosphotungstic acid and aminoalkoxysilanes on SiO2/Si surfaces. Thin Solid Films 520:3574–3580. https://doi.org/10.1016/j.tsf.2011.12.069
CAS
Article
Google Scholar
Leroy F, Miró P, Poblet JM et al. (2008) Keggin polyoxoanions in aqueous solution: ion pairing and its effect on dynamic properties by molecular dynamics simulations. J Phys Chem B 112:8591–8599. https://doi.org/10.1021/jp077098p
CAS
Article
Google Scholar
Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370. https://doi.org/10.1021/cr8003828
CAS
Article
Google Scholar
Ball P, Hallsworth JE (2015) Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys 17:8297–8305. https://doi.org/10.1039/C4CP04564E
CAS
Article
Google Scholar
Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104. https://doi.org/10.1016/j.bpc.2007.03.009
CAS
Article
Google Scholar
Costa AO, Oliveira LB, Lins MPE et al. (2013) Sustainability analysis of biodiesel production: a review on different resources in Brazil. Renew Sustain Energy Rev 27:407–412. https://doi.org/10.1016/j.rser.2013.06.005
Article
Google Scholar
Thangaraj B, Solomon PR, Muniyandi B et al. (2019) Catalysis in biodiesel production—a review. Clean Energy 3:2–23. https://doi.org/10.1093/ce/zky020
Article
Google Scholar
Mousdale D (2008) Diversifying the biofuels portfolio. In: Biofuels. CRC Press, Boca Raton, pp 285–320
Danaei SM, Safavi A, Roeinpeikar SMMM et al. (2011) Ion release from orthodontic brackets in 3 mouthwashes: An in-vitro study. Am J Orthod Dentofac Orthop 139:730–734. https://doi.org/10.1016/j.ajodo.2011.03.004
Article
Google Scholar
De Morais LS, Guimarães GS, Elias CN (2007) Liberação de íons por biomateriais metálicos. Rev Dent Press Ortod e Ortop Facial 12:48–53. https://doi.org/10.1590/S1415-54192007000600006
Article
Google Scholar
Nuevo-Ordóñez Y, Montes-Bayón M, Blanco-González E et al. (2011) Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Anal Bioanal Chem 401:2747–2754. https://doi.org/10.1007/s00216-011-5232-8
CAS
Article
Google Scholar
Yang X, Vang C, Tallman D et al. (2001) Weathering degradation of a polyurethane coating. Polym Degrad Stab 74:341–351. https://doi.org/10.1016/S0141-3910(01)00166-5
CAS
Article
Google Scholar
Kowalczyk K, Łuczka K, Grzmil B, Spychaj T (2012) Anticorrosive polyurethane paints with nano- and microsized phosphates. Prog Org Coat 74:151–157. https://doi.org/10.1016/j.porgcoat.2011.12.003
CAS
Article
Google Scholar
Yang XF, Tallman DE, Bierwagen GP et al. (2002) Blistering and degradation of polyurethane coatings under different accelerated weathering tests. Polym Degrad Stab 77:103–109. https://doi.org/10.1016/S0141-3910(02)00085-X
CAS
Article
Google Scholar
Drago RS, Dias JA, Maier TO (1997) An acidity scale for brönsted acids including H3PW12O40. J Am Chem Soc 119:7702–7710. https://doi.org/10.1021/ja9639123
CAS
Article
Google Scholar
Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. BioMedicine 5:22. https://doi.org/10.7603/s40681-015-0022-9
Article
Google Scholar
Fu S, Chu J, Chen X et al. (2015) Well-Dispersed H3PW12O40/H4SiW12O40 nanoparticles on mesoporous polymer for highly efficient acid-catalyzed reactions. Ind Eng Chem Res 54:11534–11542. https://doi.org/10.1021/acs.iecr.5b03385
CAS
Article
Google Scholar
Essayem N, Frety R, Coudurier G, Vedrine JC (1997) Ammonia adsorption-desorption over the strong solid acid catalyst H3PW12O4o and its Cs+ and NH4+ salts comparison with sulfated zirconia. J Chem Soc Faraday Trans 93:3243–3248. https://doi.org/10.1039/a701097d
CAS
Article
Google Scholar
Medilanski E, Kaufmann K, Wick LY et al. (2002) Influence of the surface topography of stainless steel on bacterial adhesion. Biofouling 18:193–203. https://doi.org/10.1080/08927010290011370
Article
Google Scholar
Piva RH, Rocha MC, Piva DH et al. (2018) Acidic dressing based on agarose/Cs2.5H0.5PW12O40 nanocomposite for infection control in wound care. ACS Appl Mater Interfaces 10:30963–30972. https://doi.org/10.1021/acsami.8b09066
CAS
Article
Google Scholar
Liu B, Wang YL, Bai W et al. (2017) Fluorescent linear CO2-derived poly(hydroxyurethane) for cool white LED. J Mater Chem C. https://doi.org/10.1039/c7tc01236e
Xu W, Liu B, Cai X et al. (2018) Fluorescent poly(hydroxyurethane): biocompatibility evaluation and selective detection of Fe(III). J Appl Polym Sci 135:46723. https://doi.org/10.1002/app.46723
CAS
Article
Google Scholar
Carlos LD, Sá Ferreira RA, De Zea Bermudez V, Ribeiro SJL (2001) Full-color phosphors from amine-functionalized crosslinked hybrids lacking metal activator ions. Adv Funct Mater 11:111–115. https://doi.org/10.1002/1616-3028(200104)11:2<111::AID-ADFM111>3.0.CO;2-V3.0.CO;2-V
Neves CS, Granadeiro CM, Cunha-Silva L et al. (2013) Europium polyoxometalates encapsulated in silica nanoparticles—characterization and photoluminescence studies Eur J Inorg Chem 2877–2886. https://doi.org/10.1002/ejic.201201482
Landau R (1998) The process of innovation in the chemical industry. In: Arora A, Landau R, Rosenberg N (eds) Chemicals and long-term economic growth. insights from the chemical industry. John Wiley & Sons Inc, New York, USA, pp 139–180
Google Scholar