Skip to main content

PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing

Abstract

CO2 mitigation by cycloaddition to bis-epoxides to obtain bis-cyclocarbonates (CC) paved one way to a new class of polyurethanes (PUs), the non-isocyanate polyurethanes (NIPUs). By using molecules functionalized with alkoxysilyl groups as end chain it is possible to obtain hybrid NIPUs, also called urethanesils, by sol–gel chemistry. Using bis-cyclocarbonate polydimethylsiloxane (CCPDMS) with proper diamines and end-chain amino silanes followed by sol–gel processing leads to versatile hybrid non-isocyanate polydimethylsiloxane urethanes (PDMS-urethanesil). This review reports—besides our recent studies about PDMS-urethanesil materials—the sol–gel chemistry applied to synthesize urethanesil and its applications. While the antimicrobial, photochromic, and anticorrosion properties of urethanesil loaded with phosphotungstic acid as well as the luminescent effect of material loaded with Eu3+ have already been reported, antimicrobial features of urethanesil loaded with phosphoric acid are our newest findings which we herein report for the first time. The impact of the inorganic acid used on the sol–gel process is highlighted together with the importance of antibiofouling properties. Although the antibiofouling mechanism is still under investigation, the broad spectrum of action of phosphoric acid-loaded urethanesil is worth mentioning, since it has been tested to be efficient against some pathogenic bacteria including a drug resistant Staphylococcus aureus strain as well as pathogenic fungi and yeast. Due to the simple, straightforward, and highly reproducible synthesis as well as the opportunity to obtain versatile materials with tuneable mechanical and physical properties, this new class of hybrid materials promises to be applicable in different industrial fields.

Highlights

  • Combining CO2 use and sol–gel processing yields versatile PDMS-urethanesils with tunable properties.

  • Key approach: combine non-isocyanate PU with silica and PDMS through aminolysis of cyclocarbonate.

  • Morphology control using inorganic acid as catalyst for sol–gel process.

  • Inorganic loading defines the application, e.g., as anticorrosion coating or as white-light emitter.

  • Novel finding with new applications, e.g., antimicrobial activity against pathogenic microorganisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Sharmin, Zafar, F (2012) Polyurethane: an introduction. In: Sharmin, Zafar, F (eds) Polyurethane. Intech Open, London, pp 3–16

  2. Cornille A, Auvergne R, Figovsky O et al. (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552. https://doi.org/10.1016/j.eurpolymj.2016.11.027

    CAS  Article  Google Scholar 

  3. Akindoyo JO, Beg MDH, Ghazali S et al. (2016) Polyurethane types, synthesis and applications—a review. RSC Adv 6:114453–114482. https://doi.org/10.1039/C6RA14525F

    CAS  Article  Google Scholar 

  4. Biesmans G (2010) The global polyurethane market. In: Randall D, Lee S (eds) The Huntsmann polyurethanes book. John Wiley & Sons, Everberg, pp 9–22

    Google Scholar 

  5. Sanchez C, Rozes L, Ribot F et al. (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chim 13:3–39. https://doi.org/10.1016/j.crci.2009.06.001

    CAS  Article  Google Scholar 

  6. Bello D, Herrick CA, Smith TJ et al. (2007) Skin exposure to isocyanates: reasons for concern. Environ Health Perspect 115:328–335. https://doi.org/10.1289/ehp.9557

    CAS  Article  Google Scholar 

  7. Kathalewar MS, Joshi PB, Sabnis AS, Malshe VC (2013) Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv 3:4110. https://doi.org/10.1039/c2ra21938g

    CAS  Article  Google Scholar 

  8. Blattmann H, Fleischer M, Bähr M, Mülhaupt R (2014) Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. Macromol Rapid Commun 35:1238–1254. https://doi.org/10.1002/marc.201400209

    CAS  Article  Google Scholar 

  9. Maisonneuve L, Lamarzelle O, Rix E et al. (2015) Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115:12407–12439. https://doi.org/10.1021/acs.chemrev.5b00355

    CAS  Article  Google Scholar 

  10. Bossion A, Jones GO, Taton D et al. (2017) Non-Isocyanate polyurethane soft nanoparticles obtained by surfactant-assisted interfacial polymerization. Langmuir 33:1959–1968. https://doi.org/10.1021/acs.langmuir.6b04242

    CAS  Article  Google Scholar 

  11. Rockström J, Schellnhuber HJ, Hoskins B et al. (2016) The world’s biggest gamble. Earth’s Futur 4:465–470. https://doi.org/10.1002/2016EF000392

    Article  Google Scholar 

  12. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley, Chichester, UK

  13. Duraccio V, Gnoni MG, Elia V (2015) Carbon capture and reuse in an industrial district: a technical and economic feasibility study. J CO2 Util 10:23–29. https://doi.org/10.1016/j.jcou.2015.02.004

    CAS  Article  Google Scholar 

  14. Beniah G, Uno BE, Lan T et al. (2017) Tuning nanophase separation behavior in segmented polyhydroxyurethane via judicious choice of soft segment. Polymer 110:218–227. https://doi.org/10.1016/j.polymer.2017.01.017

    CAS  Article  Google Scholar 

  15. Beniah G, Heath WH, Torkelson JM (2017) Functionalization of hydroxyl groups in segmented polyhydroxyurethane eliminates nanophase separation. J Polym Sci Part A Polym Chem 55:3347–3351. https://doi.org/10.1002/pola.28722

    CAS  Article  Google Scholar 

  16. Pan WC, Lin C-H, Dai SA (2014) High-performance segmented polyurea by transesterification of diphenyl carbonates with aliphatic diamines. J Polym Sci Part A Polym Chem 52:2781–2790. https://doi.org/10.1002/pola.27302

    CAS  Article  Google Scholar 

  17. Figovsky O, Leykin A, Shapovalov L (2016) Non-isocyanate polyurethanes—yesterday, today and tomorrow. Alter Energy Ecol 3–4:95–108. https://doi.org/10.15518/isjaee.2016.03-04.009

    CAS  Article  Google Scholar 

  18. Figovsky O, Beilin D (2013) Advanced polymer concretes and compounds. CRC Press, Boca Raton, USA

  19. Figovsky OL, Shapovalov L, Leykin A et al. (2013) Progress in elaboration of nonisocyanate polyurethanes based on cyclic carbonates. Int Lett Chem Phys Astron 3:52–66. https://doi.org/10.18052/www.scipress.com/ILCPA.3.52

    Article  Google Scholar 

  20. Pilch-Pitera B (2014) Polyurethane powder coatings containing polysiloxane. Prog Org Coat 77:1653–1662. https://doi.org/10.1016/j.porgcoat.2014.05.021

    CAS  Article  Google Scholar 

  21. Henderson CMB (1987) Structural chemistry of silicates; structure, bonding and classification. Earth-Sci Rev 24:154–155. https://doi.org/10.1016/0012-8252(87)90019-5

    Article  Google Scholar 

  22. Willerth S (2017) Engineering neural tissue from stem cells. Academic Press, Cambridge, Massachusetts

  23. Liu C (2015) Development of anti-fouling coating using in marine environment. Int J Environ Monit Anal 3:373. https://doi.org/10.11648/j.ijema.20150305.30

    Article  Google Scholar 

  24. Aguiar KR, Santos VG, Eberlin MN et al. (2014) Efficient green synthesis of bis(cyclic carbonate) poly(dimethylsiloxane) derivative using CO2 addition: a novel precursor for synthesis of urethanes. RSC Adv 24334–24343. https://doi.org/10.1039/c4ra03846k

  25. Rossi de Aguiar KMF, Alves VS, Noeske P-LM et al (2019) Hybrid films based on nonisocyanate polyurethanes with antimicrobial activity. In: Materials for biomedical engineering. Elsevier, Amsterdam, pp 77–116

  26. Simões MB, Ullah S, Hazra C et al. (2018) Eco-friendly polydimethylsiloxane-based self-supporting film containing europium-polyoxometalate: a flexible luminescent material for white light generation. J Lumin 201:384–389. https://doi.org/10.1016/j.jlumin.2018.04.041

    CAS  Article  Google Scholar 

  27. Rossi de Aguiar KMF, Nascimento MV, Faccioni JL et al. (2019) Urethanes PDMS-based: functional hybrid coatings for metallic dental implants. Appl Surf Sci 484:1128–1140. https://doi.org/10.1016/j.apsusc.2019.04.058

    CAS  Article  Google Scholar 

  28. Rossi de Aguiar KMF, Specht U, Maass JF et al. (2016) Surface modification by physical treatments on biomedical grade metals to improve adhesion for bonding hybrid non-isocyanate urethanes. RSC Adv 6:47203–47211. https://doi.org/10.1039/C6RA05397A

    CAS  Article  Google Scholar 

  29. Rossi De Aguiar KMF, Ferreira-Neto EP, Blunk S et al. (2016) Hybrid urethanesil coatings for inorganic surfaces produced by isocyanate-free and sol-gel routes: Synthesis and characterization. RSC Adv 6:19160–19172. https://doi.org/10.1039/c5ra24331a

    CAS  Article  Google Scholar 

  30. de Aguiar KR, Rischka K, Gätjen L et al. (2018) Biomimetic PDMS-hydroxyurethane terminated with catecholic moieties for chemical grafting on transition metal oxide-based surfaces. Appl Surf Sci 427:166–175. https://doi.org/10.1016/j.apsusc.2017.08.142

    CAS  Article  Google Scholar 

  31. Lima EF de S, Imasato H, Cavalheiro ETG et al. (2019) Effect of hydroxyapatite nanoparticles silanization on the preparation of nanocomposites of Hydroxyurethane polydimethylsiloxane with hydroxyapatite. In: Encontro da Sociedade Brasileira de Pesquisa em Materiais—SBPMat. Sociedade Brasileira de Pesquisa em Materiais—SBPMat. Camboriú, SC, Brazil

  32. Bayer O (1947) Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angew Chemie. https://doi.org/10.1002/ange.19470590901

  33. Boiteux G, Cuvé L, Pascault JP (1994) Synthesis and properties of polyurethanes based on polyolefin: 3. monitoring of phase separation by dielectric relaxation spectroscopy of segmented semicrystalline polyurethane prepared in bulk by the use of emulsifiers. Polymer. https://doi.org/10.1016/0032-3861(94)90068-X

  34. Urbano J, Manzarbetia F, Caramelo C (2008) Cholesterol embolism evaluated by polarized light microscopy after primary renal artery stent placement with filter protection. J Vasc Inter Radio 19:189–194. https://doi.org/10.1016/j.jvir.2007.10.006

    Article  Google Scholar 

  35. St. John KR (2014) The use of polyurethane materials in the surgery of the spine: a review. Spine J 14:3038–3047. https://doi.org/10.1016/j.spinee.2014.08.012

    Article  Google Scholar 

  36. Usman A, Zia KM, Zuber M et al. (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645. https://doi.org/10.1016/j.ijbiomac.2016.02.004

    CAS  Article  Google Scholar 

  37. Korthagen NM, Brommer H, Hermsen G et al. (2019) A short-term evaluation of a thermoplastic polyurethane implant for osteochondral defect repair in an equine model. Vet J 251:105340. https://doi.org/10.1016/j.tvjl.2019.105340

    CAS  Article  Google Scholar 

  38. de Vita R, Buccheri EM, Villanucci A, Pozzi M (2019) Breast reconstruction actualized in nipple-sparing mastectomy and direct-to-implant, prepectoral polyurethane positioning: early experience and preliminary results. Clin Breast Cancer 19:e358–e363. https://doi.org/10.1016/j.clbc.2018.12.015

    Article  Google Scholar 

  39. Alves P, Ferreira P, Gil MH (2012) Biomedical polyurethanes-based materials. In: Polyurethane: properties, structure and applications. Nova Publishers, New York, NY, pp 1–25

  40. Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2019) Bio-based routes to synthesize cyclic carbonates and polyamines precursors of non-isocyanate polyurethanes: a review. Eur Polym J 118:668–684. https://doi.org/10.1016/j.eurpolymj.2019.06.032

    CAS  Article  Google Scholar 

  41. Tersac G (2007) Chemistry and technology of polyols for polyurethanes. Milhail Ionescu. Rapra Technology, Shrewsbury, UK. Polym Int 56:820–820. https://doi.org/10.1002/pi.2159

    CAS  Article  Google Scholar 

  42. Zia KM, Anjum S, Zuber M et al. (2014) Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2014.01.073

  43. Engels H-W, Pirkl H-G, Albers R et al. (2013) Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew Chem Int Ed 52:9422–9441. https://doi.org/10.1002/anie.201302766

    CAS  Article  Google Scholar 

  44. Cypryk M, Apeloig Y (2002) Mechanism of the acid-catalyzed Si-O bond cleavage in siloxanes and siloxanols. A theoretical study. Organometallics 21:2165–2175. https://doi.org/10.1021/om011055s

    CAS  Article  Google Scholar 

  45. Fugel M, Hesse MF, Pal R et al. (2018) Covalency and ionicity do not oppose each other-relationship between Si−O bond character and basicity of siloxanes. Chem Eur J 24:15275–15286. https://doi.org/10.1002/chem.201802197

    CAS  Article  Google Scholar 

  46. Weinhold F, West R (2011) The nature of the silicon–oxygen bond. Organometallics 30:5815–5824. https://doi.org/10.1021/om200675d

    CAS  Article  Google Scholar 

  47. Gillespie RJ, Johnson SA (1997) Study of bond angles and bond lengths in disiloxane and related molecules in terms of the topology of the electron density and its Laplacian. Inorg Chem 36:3031–3039. https://doi.org/10.1021/ic961381d

    CAS  Article  Google Scholar 

  48. Kickelbick G (2006) Hybrid materials. Wiley, Chichester, UK

  49. Whan Cho J, Il Sul K (2001) Characterization and properties of hybrid composites prepared from poly(vinylidene fluoride–tetrafluoroethylene) and SiO2. Polymer 42:727–736. https://doi.org/10.1016/S0032-3861(00)00371-2

    CAS  Article  Google Scholar 

  50. Kim K-M, Adachi K, Chujo Y (2002) Polymer hybrids of functionalized silsesquioxanes and organic polymers utilizing the sol–gel reaction of tetramethoxysilane. Polymer 43:1171–1175. https://doi.org/10.1016/S0032-3861(01)00732-7

    CAS  Article  Google Scholar 

  51. Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol−gel approach. Chem Mater 8:1667–1681. https://doi.org/10.1021/cm9601143

    CAS  Article  Google Scholar 

  52. Pavličević J, Špírková M, Jovičić M et al. (2019) Structure—functional property relationship of aliphatic polyurethane-silica hybrid films. Prog Org Coat 126:62–74. https://doi.org/10.1016/j.porgcoat.2018.10.011

    CAS  Article  Google Scholar 

  53. He Z, Gao T, Duan D, Soucek MD (2019) Effect of mixed sol-gel precursors on inorganic-organic polyurethane hybrid thermosets: DOE study. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2019.04.023

  54. Alasti Bonab S, Moghaddas J, Rezaei M (2019) In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: characterization, cell microstructure and mechanical properties. Polymer 172:27–40. https://doi.org/10.1016/j.polymer.2019.03.050

    CAS  Article  Google Scholar 

  55. Son S-J, Kim K-B, Lee Y-H et al. (2011) Effect of acrylic monomer content on the properties of waterborne poly(urethane-urea)/acrylic hybrid materials J Appl Polym Sci 124. https://doi.org/10.1002/app.35662

  56. Athawale VD, Kulkarni MA (2009) Preparation and properties of urethane/acrylate composite by emulsion polymerization technique. Prog Org Coat 65:392–400

    CAS  Article  Google Scholar 

  57. Ping T, Zhou Y, He Y et al. (2016) Preparation and characterization of yellowing resistance and low volume shrinkage of fluorinated polysiloxane urethane acrylate. Prog Org Coat 97:74–81. https://doi.org/10.1016/j.porgcoat.2016.03.023

    CAS  Article  Google Scholar 

  58. Cakić SM, Valcic MD, Ristić IS et al. (2019) Waterborne polyurethane-silica nanocomposite adhesives based on castor oil-recycled polyols: effects of (3-aminopropyl)triethoxysilane (APTES) content on properties. Int J Adhes Adhes 90:22–31. https://doi.org/10.1016/j.ijadhadh.2019.01.005

    CAS  Article  Google Scholar 

  59. Kreye O, Mutlu H, Meier MAR (2013) Sustainable routes to polyurethane precursors. Green Chem 15:1431. https://doi.org/10.1039/c3gc40440d

    CAS  Article  Google Scholar 

  60. Joshi M, Adak B, Butola BS (2018) Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Prog Mater Sci 97:230–282. https://doi.org/10.1016/j.pmatsci.2018.05.001

    CAS  Article  Google Scholar 

  61. Błażek K, Datta J (2019) Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit Rev Environ Sci Technol 49:173–211. https://doi.org/10.1080/10643389.2018.1537741

    CAS  Article  Google Scholar 

  62. Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2020) Synthesis of green hybrid materials using starch and non-isocyanate polyurethanes. Carbohydr Polym 229:115535. https://doi.org/10.1016/j.carbpol.2019.115535

    CAS  Article  Google Scholar 

  63. Suryawanshi Y, Sanap P, Wani V (2019) Advances in the synthesis of non-isocyanate polyurethanes. Polym Bull 76:3233–3246. https://doi.org/10.1007/s00289-018-2531-7

    CAS  Article  Google Scholar 

  64. Datta J, Włoch M (2016) Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure–properties relationship and from an environmental point of view. Polym Bull 73:1459–1496. https://doi.org/10.1007/s00289-015-1546-6

    CAS  Article  Google Scholar 

  65. Heilig ML (1994) United States patent office. ACM SIGGRAPH Comput Graph 28:131–134. https://doi.org/10.1145/178951.178972

    Article  Google Scholar 

  66. Zabalov MV, Tiger RP, Berlin AA (2012) Mechanism of urethane formation from cyclocarbonates and amines: a quantum chemical study. Russ Chem Bull 61:518–527. https://doi.org/10.1007/s11172-012-0076-8

    CAS  Article  Google Scholar 

  67. Zabalov MV, Levina MA, Krasheninnikov VG, Tiger RP (2014) Bifunctional catalysis by acetic acid in the urethane formation from cyclocarbonates and amines: quantum chemical and kinetic study. Russ Chem Bull 63:1740–1752. https://doi.org/10.1007/s11172-014-0662-z

    CAS  Article  Google Scholar 

  68. Tomita H, Sanda F, Endo T (2001) Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine. J Polym Sci Part A Polym Chem 39:3678–3685. https://doi.org/10.1002/pola.10009

    CAS  Article  Google Scholar 

  69. Günther F, Batista Simões M, Imasato H, Pereira Rodrigues-Filho U (2019) Experimental and theoretical assessment of the aminolysis of cyclo carbonate to form polyhydroxyurethanes. Mater Today Commun 21:100604. https://doi.org/10.1016/j.mtcomm.2019.100604

    CAS  Article  Google Scholar 

  70. Lambeth RH, Rizvi A (2019) Mechanical and adhesive properties of hybrid epoxy-polyhydroxyurethane network polymers. Polymer 183:121881. https://doi.org/10.1016/j.polymer.2019.121881

    CAS  Article  Google Scholar 

  71. Sukumaran Nair A, Cherian S, Balachandran N et al. (2019) Hybrid poly(hydroxy urethane)s: folded-sheet morphology and thermoreversible adhesion. ACS Omega 4:13042–13051. https://doi.org/10.1021/acsomega.9b00789

    CAS  Article  Google Scholar 

  72. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514. https://doi.org/10.1039/c0gc00065e

    CAS  Article  Google Scholar 

  73. Martín C, Fiorani G, Kleij AW (2015) Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal 5:1353–1370. https://doi.org/10.1021/cs5018997

    CAS  Article  Google Scholar 

  74. Subramaniam A, Sethuraman S (2014) Biomedical applications of nondegradable polymers. In: Kumbar SG, Laurencin CT, Deng M (eds) Natural and Synthetic Biomedical Polymers. Elsevier Science, Amsterdam, pp. 301–308

  75. Schindler WD, Hauser PJ (2004) Chemical finishing of textiles. Woodhead Publishing Limited, Sawston, Cambridge, UK

  76. Ben Soltane H, Roizard D, Favre E (2013) Effect of pressure on the swelling and fluxes of dense PDMS membranes in nanofiltration: an experimental study. J Memb Sci 435:110–119. https://doi.org/10.1016/j.memsci.2013.01.053

    CAS  Article  Google Scholar 

  77. Stefanis E, Panayiotou C (2008) Prediction of hansen solubility parameters with a new group-contribution method. Int J Thermophys 29:568–585. https://doi.org/10.1007/s10765-008-0415-z

    CAS  Article  Google Scholar 

  78. Belmares M, Blanco M, Goddard WA et al. (2004) Hildebrand and hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem 25:1814–1826. https://doi.org/10.1002/jcc.20098

    CAS  Article  Google Scholar 

  79. Bahri S, Jonsson CM, Jonsson CL et al. (2011) Adsorption and surface complexation study of L-DOPA on rutile (α-TiO2) in NaCl solutions. Environ Sci Technol 45:3959–3966. https://doi.org/10.1021/es1042832

  80. Grunwald I, Rischka K, Kast SM et al. (2009) Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins. Philos Trans R Soc A Math Phys Eng Sci 367:1727–1747. https://doi.org/10.1098/rsta.2009.0012

    CAS  Article  Google Scholar 

  81. Zdyb A, Krawczyk S (2016) Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 157:197–203. https://doi.org/10.1016/j.saa.2016.01.006

    CAS  Article  Google Scholar 

  82. Liu G, Wu G, Huo S et al. (2017) Synthesis and properties of non-isocyanate polyurethane coatings derived from cyclic carbonate-functionalized polysiloxanes. Prog Org Coat 112:169–175. https://doi.org/10.1016/j.porgcoat.2017.07.013

  83. Lana SLB, Seddon AB (1998) X-ray diffraction studies of sol-gel derived ORMOSILs based on combinations of tetramethoxysilane and trimethoxysilane. J Sol-Gel Sci Technol 13:461–466. https://doi.org/10.1023/A:1008685614559

    CAS  Article  Google Scholar 

  84. Moreno EM, Levy D (2000) Role of the comonomer GLYMO in ORMOSILs as reflected by nile red spectroscopy. Chem Mater 12:2334–2340. https://doi.org/10.1021/cm001048e

    CAS  Article  Google Scholar 

  85. Brennan JD, Hartman JS, Ilnicki EI, Rakic M (1999) Fluorescence and NMR characterization and biomolecule entrapment studies of sol−gel-derived organic−inorganic composite materials formed by sonication of precursors. Chem Mater 11:1853–1864. https://doi.org/10.1021/cm9910097

    CAS  Article  Google Scholar 

  86. Ferreira-Neto EP, Ullah S, Ysnaga OAE, Rodrigues-Filho UP (2014) Zn2+ doped ormosil–phosphotungstate hybrid films with enhanced photochromic response. J Sol-Gel Sci Technol 72:290–300. https://doi.org/10.1007/s10971-014-3404-7

    CAS  Article  Google Scholar 

  87. Frenkel-Mullerad H, Ben-Knaz R, Avnir D (2014) Preserving the activity of enzymes under harsh oxidizing conditions: sol–gel entrapped alkaline phosphatase exposed to bromine. J Sol-Gel Sci Technol 69:453–456. https://doi.org/10.1007/s10971-013-3226-z

    CAS  Article  Google Scholar 

  88. Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102. https://doi.org/10.1016/j.jcou.2014.12.001

    CAS  Article  Google Scholar 

  89. Rubio F, Rubio J, Oteo JL (2000) Effect of TiO2 on the pore structure of SiO2-PDMS ormosils. J Sol-Gel Sci Technol. https://doi.org/10.1023/A:1008704701204

  90. Almeida JC, Wacha A, Gomes PS et al. (2016) PDMS-SiO2-TiO2-CaO hybrid materials—cytocompatibility and nanoscale surface features. Mater Sci Eng C 64:74–86. https://doi.org/10.1016/j.msec.2016.03.071

  91. Doro FG, Ramos AP, Schneider JF et al. (2014) Deposition of organic−inorganic hybrid coatings over 316L surgical stainless steel and evaluation on vascular cells. Can J Chem 92:987–995. https://doi.org/10.1139/cjc-2014-0034

  92. Rodrigues-Filho UP, de Aguiar KMF, Rischka K (2017) Processo de obtenção de materiais derivados de polidimetilsiloxano (Pdms) materiais derivados de polidimetilsiloxano (Pdms) E Seus Usos. BR 102015024615-3 A2. The National Institute of Industrial Property (INPI)

  93. Mackenzie JD, Bescher E (2003) Some factors governing the coating of organic polymers by sol-gel derived hybrid materials. J Sol-Gel Sci Technol 27:7–14. https://doi.org/10.1023/A:1022659323517

    CAS  Article  Google Scholar 

  94. Wu Y, Guo P, Zhao Y et al. (2019) Hydrophobic, transparent waterborne polyurethane-polydimethylsiloxane composites prepared from aqueous sol-gel process and applied in corrosion protection. Prog Org Coat 127:231–238. https://doi.org/10.1016/j.porgcoat.2018.06.002

    CAS  Article  Google Scholar 

  95. de Aguiar KMFR (2015) Síntese de hidroxiuretana-poli (dimetilsiloxano) com diferentes terminações de cadeia via fixação de CO2: síntese, caracterizações e potenciais aplicações. Universidade de São Paulo, São Paulo

    Google Scholar 

  96. Ferreira-Neto EP, de Carvalho FLS, Ullah S et al. (2013) Surface structure and reactivity study of phosphotungstic acid-nitrogenated ormosils. J Sol-Gel Sci Technol 66:363–371. https://doi.org/10.1007/s10971-013-3018-5

    CAS  Article  Google Scholar 

  97. Souza AL, Marques LA, Eberlin MN et al. (2012) Self-assembled hybrid films of phosphotungstic acid and aminoalkoxysilanes on SiO2/Si surfaces. Thin Solid Films 520:3574–3580. https://doi.org/10.1016/j.tsf.2011.12.069

    CAS  Article  Google Scholar 

  98. Leroy F, Miró P, Poblet JM et al. (2008) Keggin polyoxoanions in aqueous solution: ion pairing and its effect on dynamic properties by molecular dynamics simulations. J Phys Chem B 112:8591–8599. https://doi.org/10.1021/jp077098p

    CAS  Article  Google Scholar 

  99. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370. https://doi.org/10.1021/cr8003828

    CAS  Article  Google Scholar 

  100. Ball P, Hallsworth JE (2015) Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys 17:8297–8305. https://doi.org/10.1039/C4CP04564E

    CAS  Article  Google Scholar 

  101. Collins KD, Neilson GW, Enderby JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104. https://doi.org/10.1016/j.bpc.2007.03.009

    CAS  Article  Google Scholar 

  102. Costa AO, Oliveira LB, Lins MPE et al. (2013) Sustainability analysis of biodiesel production: a review on different resources in Brazil. Renew Sustain Energy Rev 27:407–412. https://doi.org/10.1016/j.rser.2013.06.005

    Article  Google Scholar 

  103. Thangaraj B, Solomon PR, Muniyandi B et al. (2019) Catalysis in biodiesel production—a review. Clean Energy 3:2–23. https://doi.org/10.1093/ce/zky020

    Article  Google Scholar 

  104. Mousdale D (2008) Diversifying the biofuels portfolio. In: Biofuels. CRC Press, Boca Raton, pp 285–320

  105. Danaei SM, Safavi A, Roeinpeikar SMMM et al. (2011) Ion release from orthodontic brackets in 3 mouthwashes: An in-vitro study. Am J Orthod Dentofac Orthop 139:730–734. https://doi.org/10.1016/j.ajodo.2011.03.004

    Article  Google Scholar 

  106. De Morais LS, Guimarães GS, Elias CN (2007) Liberação de íons por biomateriais metálicos. Rev Dent Press Ortod e Ortop Facial 12:48–53. https://doi.org/10.1590/S1415-54192007000600006

    Article  Google Scholar 

  107. Nuevo-Ordóñez Y, Montes-Bayón M, Blanco-González E et al. (2011) Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Anal Bioanal Chem 401:2747–2754. https://doi.org/10.1007/s00216-011-5232-8

    CAS  Article  Google Scholar 

  108. Yang X, Vang C, Tallman D et al. (2001) Weathering degradation of a polyurethane coating. Polym Degrad Stab 74:341–351. https://doi.org/10.1016/S0141-3910(01)00166-5

    CAS  Article  Google Scholar 

  109. Kowalczyk K, Łuczka K, Grzmil B, Spychaj T (2012) Anticorrosive polyurethane paints with nano- and microsized phosphates. Prog Org Coat 74:151–157. https://doi.org/10.1016/j.porgcoat.2011.12.003

    CAS  Article  Google Scholar 

  110. Yang XF, Tallman DE, Bierwagen GP et al. (2002) Blistering and degradation of polyurethane coatings under different accelerated weathering tests. Polym Degrad Stab 77:103–109. https://doi.org/10.1016/S0141-3910(02)00085-X

    CAS  Article  Google Scholar 

  111. Drago RS, Dias JA, Maier TO (1997) An acidity scale for brönsted acids including H3PW12O40. J Am Chem Soc 119:7702–7710. https://doi.org/10.1021/ja9639123

    CAS  Article  Google Scholar 

  112. Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. BioMedicine 5:22. https://doi.org/10.7603/s40681-015-0022-9

    Article  Google Scholar 

  113. Fu S, Chu J, Chen X et al. (2015) Well-Dispersed H3PW12O40/H4SiW12O40 nanoparticles on mesoporous polymer for highly efficient acid-catalyzed reactions. Ind Eng Chem Res 54:11534–11542. https://doi.org/10.1021/acs.iecr.5b03385

    CAS  Article  Google Scholar 

  114. Essayem N, Frety R, Coudurier G, Vedrine JC (1997) Ammonia adsorption-desorption over the strong solid acid catalyst H3PW12O4o and its Cs+ and NH4+ salts comparison with sulfated zirconia. J Chem Soc Faraday Trans 93:3243–3248. https://doi.org/10.1039/a701097d

    CAS  Article  Google Scholar 

  115. Medilanski E, Kaufmann K, Wick LY et al. (2002) Influence of the surface topography of stainless steel on bacterial adhesion. Biofouling 18:193–203. https://doi.org/10.1080/08927010290011370

    Article  Google Scholar 

  116. Piva RH, Rocha MC, Piva DH et al. (2018) Acidic dressing based on agarose/Cs2.5H0.5PW12O40 nanocomposite for infection control in wound care. ACS Appl Mater Interfaces 10:30963–30972. https://doi.org/10.1021/acsami.8b09066

    CAS  Article  Google Scholar 

  117. Liu B, Wang YL, Bai W et al. (2017) Fluorescent linear CO2-derived poly(hydroxyurethane) for cool white LED. J Mater Chem C. https://doi.org/10.1039/c7tc01236e

  118. Xu W, Liu B, Cai X et al. (2018) Fluorescent poly(hydroxyurethane): biocompatibility evaluation and selective detection of Fe(III). J Appl Polym Sci 135:46723. https://doi.org/10.1002/app.46723

    CAS  Article  Google Scholar 

  119. Carlos LD, Sá Ferreira RA, De Zea Bermudez V, Ribeiro SJL (2001) Full-color phosphors from amine-functionalized crosslinked hybrids lacking metal activator ions. Adv Funct Mater 11:111–115. https://doi.org/10.1002/1616-3028(200104)11:2<111::AID-ADFM111>3.0.CO;2-V3.0.CO;2-V

  120. Neves CS, Granadeiro CM, Cunha-Silva L et al. (2013) Europium polyoxometalates encapsulated in silica nanoparticles—characterization and photoluminescence studies Eur J Inorg Chem 2877–2886. https://doi.org/10.1002/ejic.201201482

  121. Landau R (1998) The process of innovation in the chemical industry. In: Arora A, Landau R, Rosenberg N (eds) Chemicals and long-term economic growth. insights from the chemical industry. John Wiley & Sons Inc, New York, USA, pp 139–180

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the grants 2011/06019-0, 2013/05279-3, 2011/08120-0, 2018/19785-1, and 2018/15670-5. Furthermore, the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the grants 302185/2017-8 is acknowledged, as well as the German Academic Exchange Service (DAAD) for grant 57210526. Further thanks go to the joint PROBRAL program between Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and DAAD for grant 8881.198673/2018-01 for fostering the Brazilian-German bilateral collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ubirajara Pereira Rodrigues-Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Günther, F., Lima, E.F.S., Rossi de Aguiar, K.M.F. et al. PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing. J Sol-Gel Sci Technol 95, 693–709 (2020). https://doi.org/10.1007/s10971-020-05376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05376-y

Keywords

  • Non-isocyanate polyurethanes
  • Inorganic–organic hybrid
  • Polydimethylsiloxane
  • Biomedical coatings
  • Photonic
  • Anticorrosion