Skip to main content

Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition

Abstract

Hierarchically porous materials with large pores in the micrometer range and small pores in the nanometer range, where the large pores facilitate mass transport and the small pores supply numerous active sites, show superiority to materials with unimodal pores in the fields of separation and adsorption. Among all the methods used to prepare hierarchically porous monoliths (HPMs), the sol–gel process accompanied by spinodal decomposition (or phase separation) shows its advantages such as facile method, no template, precise structural control, good reproducibility, and availability for various kinds of materials. This review focuses on the specific process to prepare various types of HPMs including silica, metal oxides, metal phosphates, and metal–organic hybrids, via the sol–gel process accompanied by spinodal decomposition. The HPMs composed of organic polymer and their carbonized derivatives prepared by polymerization-induced phase separation are also covered in this review as an example of similar morphological formation in purely organic crosslinking reactions. This review directs the most attention to the preparation of monolithic gels (sol–gel process) and the control of macroporous structure (phase separation).

Highlights

  • This review summarizes the preparation of hierarchically porous monoliths with various chemical compositions.

  • The phase separation behaviors and methods of controlling pore structures are described in detail.

  • Latest advances on the formation of porous monolith with low-valence metal oxides as well as metal–organic frameworks compositions are also introduced.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Moitra N, Kanamori K, Ikuhara YH, Gao X, Zhu Y, Hasegawa G, Takeda K, Shimada T, Nakanishi K (2014) Reduction on reactive pore surfaces as a versatile approach to synthesize monolith-supported metal alloy nanoparticles and their catalytic applications. J Mater Chem A 2:12535–12544

    CAS  Google Scholar 

  2. 2.

    Pélisson CH, Nakanishi T, Zhu Y, Morisato K, Kamei T, Maeno A, Kaji H, Muroyama S, Tafu M, Kanamori K, Shimada T, Nakanishi K (2017) Grafted polymethylhydrosiloxane on hierarchically porous silica monoliths: a new path to monolith-supported palladium nanoparticles for continuous flow catalysis applications. ACS Appl Mater Interfaces 9:406–412

    Google Scholar 

  3. 3.

    Hakat Y, Kotbagi TV, Bakker MG (2016) Silver supported on hierarchically porous SiO2 and Co3O4 monoliths: efficient heterogeneous catalyst for oxidation of cyclohexene. J Mol Catal Chem 411:61–71

    CAS  Google Scholar 

  4. 4.

    Herwig J, Titus J, Kullmann J, Wilde N, Hahn T, Gälsrt R, Enke D (2018) Hierarchically structured porous spinels via an epoxide-mediated sol–gel process accompanied by polymerization-induced phase separation. ACS Omega 3:1201–1212

    CAS  Google Scholar 

  5. 5.

    Gao D, Shen Y, Zhao B, Liu Q, Nakanishi K, Chen J, Kanamori K, Wu H, He Z, Zeng M, Liu H (2019) Macroporous niobium phosphate-supported magnesia catalysts for isomerization of glucose-to-fructose. ACS Sustain Chem Eng 7:8512–8521

    CAS  Google Scholar 

  6. 6.

    Smeets V, Biggelaar L, Barakat T, Gaigneaux EM, Debecker DP (2019) Macrocellular titanosilicate monolith as highly efficient structured olefin epoxidation catalysts. ChemCatChem 11:1593–1597

    CAS  Google Scholar 

  7. 7.

    Mrowiec-Białoń J, Ciemięga A, Maresz K, Szymańska K, Pudło W, Jarzębski AB (2018) Review on hierarchically microstructured monolithic reactors for high yield continuous production of fine chemicals. Chemical and process. Engineer 39:367–375

    Google Scholar 

  8. 8.

    Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T (2002) Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A 965:35–49

    CAS  Google Scholar 

  9. 9.

    Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40:863–873

    CAS  Google Scholar 

  10. 10.

    Núňez O, Nakanishi K, Tanaka N (2008) Preparation of monolithic silica columns for high-performance liquid chromatography. J Chromatogr A 1191:231–252

    Google Scholar 

  11. 11.

    Tao S, Wang Y, An Y (2011) Superwetting monolithic SiO2 with hierarchical structure for oil removal. J Mater Chem 21:11901–11907

    CAS  Google Scholar 

  12. 12.

    Zhu Y, Morisato K, Li W, Kanamori K, Nakanishi K (2013) Synthesis of silver nanoparticles confined in hierarchically porous monolithic silica: a new function in aromatic hydrocarbon separations. ACS Appl Mater Interfaces 5:2118–2125

    CAS  Google Scholar 

  13. 13.

    Hu Y, Giret S, Meinusch R, Han J, Fontaine FG, Kleitz F, Larivière D (2019) Selective separation and preconcentration of Th(IV) using organo-functionalized, hierarchically porous silica monoliths. J Mater Chem A 7:289–302

    CAS  Google Scholar 

  14. 14.

    Ko YG, Lee HJ, Kim JY, Choi US (2014) Hierarchically porous aminosilica monolith as a CO2 adsorbent. ACS Appl Mater Interfaces 6:12988–12996

    CAS  Google Scholar 

  15. 15.

    Tao G, Zhang L, Hua Z, Chen Y, Guo L, Zhang J, Shu Z, Gao J, Chen H, Wu W, Liu Z, Shi J (2014) Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity. Carbon 66:547–559

    CAS  Google Scholar 

  16. 16.

    Zhu Y, Shimizu T, Kitajima T, Morisato K, Moitra N, Brun N, Kiyomura T, Kanamori K, Takeda K, Kurata H, Tafu M, Nakanishi K (2015) Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New J Chem 39:2444–2450

    CAS  Google Scholar 

  17. 17.

    Guo X, Ding L, Kanamori K, Nakanishi K, Yang H (2017) Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption. Micropor Mesopor Mat 245:51–57

    CAS  Google Scholar 

  18. 18.

    Ge X, Ma Y, Song X, Wang G, Zhang H, Zhang Y, Zhao H (2017) β-FeOOH nanorods/carbon foam-based hierarchically porous monolith for highly effective arsenic removal. ACS Appl Mater Interfaces 9:13480–13490

    CAS  Google Scholar 

  19. 19.

    Wang J, Wang X, Zhang X (2017) Cyclic molecule aerogels: a robust cyclodextrin monolith with hierarchically porous structures for removal of micropollutants from water. J Mater Chem A 5:4308–4313

    CAS  Google Scholar 

  20. 20.

    Lee J, Chang JY (2018) Pickering emulsion stabilized by microporous organic polymer particles for the fabrication of a hierarchically porous monolith. Langmuir 34:11843–11849

    CAS  Google Scholar 

  21. 21.

    Liu Z, Wang H, Ou J, Chen L, Ye M (2018) Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal. J Hazard Mater 355:145–153

    CAS  Google Scholar 

  22. 22.

    Hu Y, Adelhelm P, Smarsly BM, Hore S, Antonietti M, Maier J (2007) Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater 17:1873–1878

    CAS  Google Scholar 

  23. 23.

    Hasegawa G, Aoki M, Kanamori K, Nakanishi K, Hanada T, Tadanaga K (2011) Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S–containing activated carbon with high surface area. J Mater Chem 21:2060–2063

    CAS  Google Scholar 

  24. 24.

    Estevez L, Dua R, Bhandari N, Ramanujapuram A, Wang P, Giannelis EP (2013) A facile approach for the synthesis of monolithic hierarchical porous carbons–high performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ Sci 6:1785–1790

    CAS  Google Scholar 

  25. 25.

    Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Nakanishi K, Abe T (2015) Hierarchically porous Li4Ti5O12 anode materials for Li- and Na-ion batteries: effects of nanoarchitectural design and temperature dependence of the rate capability. Adv Energy Mater 5:1400730(1–8)

    Google Scholar 

  26. 26.

    Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K (2015) Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chem Mater 28:3944–3950

    Google Scholar 

  27. 27.

    Gong J, Zhao G, Feng J, Wang G, An Y, Zhang L, Li B (2019) Novel method of fabricating free-standing and nitrogen-doped 3-D hierarchically porous carbon monoliths as anodes for high-performance sodium-ion batteries by supercritical CO2 foaming. ACS Appl Mater Interfaces 11:9125–9135

    CAS  Google Scholar 

  28. 28.

    Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281:538–540

    CAS  Google Scholar 

  29. 29.

    Sakurai M, Shimojima A, Heishi M, Kuroda K (2007) Preparation of mesostructured siloxane–organic hybrid films with ordered macropores by templated self-assembly. Langmuir 23:10788–10792

    CAS  Google Scholar 

  30. 30.

    Gu R, Zeng G, Shao J, Liu Y, Schwank JW, Li Y (2013) Sustainable H2 production from ethanol steam reforming over a macro–mesoporous Ni/Mg–Al–O catalytic monolith. Chem Sci Eng 7:270–278

    CAS  Google Scholar 

  31. 31.

    Roberts AD, Li X, Zhang H (2015) Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon 95:268–278

    CAS  Google Scholar 

  32. 32.

    Zhang H, Nunes PD, Wilhelm M, Rezwan K (2016) Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. J Eur Ceram Soc 36:51–58

    Google Scholar 

  33. 33.

    Gao H, Pan J, Han D, Zhang Y, Shi W, Zeng J, Peng Y, Yan Y (2015) Facile synthesis of microcellular foam catalysts with adjustable hierarchical porous structure, acid–base strength and wettability for biomass energy conversion. J Mater Chem A 3:13507–13518

    CAS  Google Scholar 

  34. 34.

    Wang J, Zhu H, Li B, Zhu S (2018) Interconnected porous monolith prepared via UiO-66 stabilized pickering high internal phase emulsion template. Chem Eur J 24:16426–16431

    CAS  Google Scholar 

  35. 35.

    Nakanishi K, Soga N (1991) Phase separation in gelling silica–organic polymer solution: systems containing poly(sodium styrenesulfonate). J Am Ceramic Soc 74:2518–2530

    CAS  Google Scholar 

  36. 36.

    Cahn JW (1964) Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 42:93–99

    Google Scholar 

  37. 37.

    Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61

    CAS  Google Scholar 

  38. 38.

    Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440

    CAS  Google Scholar 

  39. 39.

    Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112

    CAS  Google Scholar 

  40. 40.

    Kaji H, Nakanishi K, Soga N (1995) Formation of porous gel morphology by phase separation in gelling alkoxy-derived silica. Affinity between silica polymers and solvent. J Non-Crystal Solid 181:16–26

    CAS  Google Scholar 

  41. 41.

    Kaji H, Nakanishi K, Soga N (1995) Formation of porous gel morphology by phase separation in gelling alkoxy-derived silica. Phenomenological study. J Non-Cryst Solid 185:18–30

    CAS  Google Scholar 

  42. 42.

    Nakanishi K, Soga N (1991) Phase separation in silica sol–gel system containing polyacrylic acid II. Effects of molecular weight and temperature. J Non-cryst Solid 139:14–24

    Google Scholar 

  43. 43.

    Nakanishi K, Soga N (1997) Phase separation in silica sol–gel system containing poly(ethylene oxide). II. Effects of molecular weight and temperature. Bull Chem Soc Jpn 70:587–592

    CAS  Google Scholar 

  44. 44.

    Dong H, Brennan JD (2006) Controlling the morphology of methylsilsesquioxane monoliths using a two-step processing method. Chem Mater 18:541–546

    Google Scholar 

  45. 45.

    Dong H, Brennan JD (2006) Macroporous monolithic methylsilsesquioxanes prepared by a two-step acid/acid processing method. Chem Mater 18:4176–4182

    CAS  Google Scholar 

  46. 46.

    Kanamori K, Kodera Y, Hayase G, Nakanishi K, Hanada T (2011) Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol–gel system. J Colloid Interface Sci 357:336–344

    CAS  Google Scholar 

  47. 47.

    Nakanishi K, Kanamori K (2005) Organic–inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J Mater Chem 15:3746–3786

    Google Scholar 

  48. 48.

    Hayase G, Kanamori K, Nakanishi K (2011) New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors. J Mater Chem 21:17077–17079

    CAS  Google Scholar 

  49. 49.

    Hasegawa G, Kanamori K, Nakanishi K (2012) Pore properties of hierarchically porous carbon monoliths with high surface area obtained from bridged polysilsesquioxanes. Micropor Mesopor Mat 155:265–273

    CAS  Google Scholar 

  50. 50.

    Hayase G, Kanamori K, Hasegawa G, Maeno A, Kaji H, Nakanishi K (2013) A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. Agnew Chem Int Ed 52:10788–10791

    CAS  Google Scholar 

  51. 51.

    Moitra N, Kanamori K, Shimada T, Takeda K, Ikuhara YH, Gao X, Nakanishi K (2013) Synthesis of hierarchically porous hydrogen silsesquioxane monoliths and embedding of metal nanoparticles by on-site reduction. Adv Funct Mater 23:2714–2722

    CAS  Google Scholar 

  52. 52.

    Lehr von der M, Hormann K, Holtzed A, White LS, Reising AE, Bertino MF, Smarsly BM, Tallarek U (2017) Mesopore etching under supercritical conditions – A shortcut to hierarchically porous silica monoliths. Micropor Mesopor Mat 243:247–253

    Google Scholar 

  53. 53.

    Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Phase-separation-induced titania monoliths with well-defined macropores and mesostructured framework from colloid-derived sol−gel systems. Chem Mater 18:864–866

    CAS  Google Scholar 

  54. 54.

    Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Monolithic TiO2 with controlled multiscale porosity via a template-free sol−gel process accompanied by phase separation. Chem Mater 18:6069–6074

    CAS  Google Scholar 

  55. 55.

    Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Facile preparation of hierarchically porous TiO2 monoliths. J Am Ceram Soc 93:3110–3115

    CAS  Google Scholar 

  56. 56.

    Ruzimuradov ON, Hasegawa G, Kanamori K, Nakanishi K (2011) Facile preparation of monolithic magnesium titanates with hierarchical porosity. J Ceram Soc Jpn 119:440–444

    CAS  Google Scholar 

  57. 57.

    Ruzimuradov ON, Hasegawa G, Kanamori K, Nakanishi K (2011) Preparation of hierarchically porous nanocrystalline CaTiO3, SrTiO3 and BaTiO3 perovskite monoliths. J Am Ceram Soc 94:3335–3339

    CAS  Google Scholar 

  58. 58.

    Numata M, Takahashi R, Ymada I, Nakanishi K, Sato S (2010) Sol–gel preparation of Ni/TiO2 catalysts with bimodal pore structures. Appl Catal A 383:66–72

    CAS  Google Scholar 

  59. 59.

    Moreno-Marrodan C, Barbaro P, Caporali S, Bossola F (2018) Low-temperature continuous–flow dehydration of xylose over water–tolerant niobia–titania heterogeneous catalysts. ChemSusChem 11:3649–3660

    CAS  Google Scholar 

  60. 60.

    Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K (2008) Crystalline ZrO2 monoliths with well–defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol-gel process accompanied by spinodal decomposition and the solvothermal process. Chem Mater 20:2165–2173

    CAS  Google Scholar 

  61. 61.

    Gash AE, Tillotson TM, Satcher Jr. JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol−gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 3:999–1007

    Google Scholar 

  62. 62.

    Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by spinodal decomposition. Chem Mater 19:3393–3398

    CAS  Google Scholar 

  63. 63.

    Li W, Guo X, Zhu Y, Hui Y, Kanamori K, Nakanishi K (2013) Sol–gel synthesis of macroporous TiO2 from ionic precursors via phase separation route. J Sol–Gel Sci Technol 67:639–645

    CAS  Google Scholar 

  64. 64.

    Guo X, Song J, Lvlin Y, Nakanishi K, Kanamori K, Yang H (2015) Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by spinodal decomposition. Sci Tech Adv Mater 16:025003(1–10)

    Google Scholar 

  65. 65.

    Tokudome Y, Fujita K, Nakanishi K, Kanamori K, Miura K, Hirao K, Hanada T (2007) Sol–gel synthesis of macroporous YAG from ionic precursors via phase separation route. J Ceram Soc Jpn 115:925–928

    CAS  Google Scholar 

  66. 66.

    Guo X, Song J, Ren J, Yang F, Kanamori K, Nakanishi K (2016) Facile preparation of well-defined macroporous yttria-stabilized zirconia monoliths via sol-gel process accompanied by spinodal decomposition. J Porous Mater 23:867–875

    CAS  Google Scholar 

  67. 67.

    Guo X, Wang Z, Song J, Yang H (2017) Sol–gel synthesis of macroporous barium zirconate monoliths from ionic precursors via a phase separation route. J Phys Chem Solids 102:105–109

    CAS  Google Scholar 

  68. 68.

    Guo X, Ding L, Ren J, Yang H (2017) Preparation of macroporous Li2ZrO3 monoliths via an epoxide-mediated sol-gel process accompanied by spinodal decomposition. J Porous Mater 24:1319–1326

    CAS  Google Scholar 

  69. 69.

    Wang R, Yang H, Lu Y, Kanamori K, Nakanishi K, Guo X (2017) Synthesis, reduction, and electrical properties of macroporous monolithic mayenite electrides with high porosity. ACS Omega 2:8148–8155

    CAS  Google Scholar 

  70. 70.

    Guo X, Yin P, Kanamori K, Nakanishi K, Yang H (2018) Sol–gel preparation of hierarchically porous magnesium aluminate (MgAl2O4) spinel monoliths for dye adsorption. J Sol–Gel Sci Technol 88:114–128

    CAS  Google Scholar 

  71. 71.

    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid St Chem 18:259–341

    CAS  Google Scholar 

  72. 72.

    Hara Y, Kanamori K, Morisato K, Miyamoto R, Nakanishi K (2018) Iron(III) oxyhydroxide and oxide monoliths with controlled multiscale porosity: synthesis and their adsorption performance. J Mater Chem A 6:9041–9048

    CAS  Google Scholar 

  73. 73.

    Lu X, Kanamori K, Nakanishi K (2019) Synthesis of hierarchically porous MgO monoliths with continuous structure via sol–gel process accompanied by spinodal decomposition. J Sol–Gel Sci Technol 89:29–36

    CAS  Google Scholar 

  74. 74.

    Lu X, Kanamori K, Nakanishi K (2020) Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation. Natl Sci Rev https://doi.org/10.1093/nsr/nwaa103

  75. 75.

    Tokudome Y, Tarutani N, Nakanishi K, Takahashi M (2013) Layered double hydroxide (LDH)-based monolith with interconnected hierarchical channels: enhanced sorption affinity for anionic species. J Mater Chem A 1:7702–7708

    CAS  Google Scholar 

  76. 76.

    Tarutani N, Tokudome Y, Fukui M, Nakanishi K, Takahashi M (2015) Fabrication of hierarchically porous monolithic layered double hydroxide composites with tunable microcages for effective oxyanion adsorption. RSC Adv 5:57187–57192

    CAS  Google Scholar 

  77. 77.

    Tokudome Y, Miyasaka A, Nakanishi K, Hanada T (2011) Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors. J Sol–Gel Sci Technol 57:269–278

    CAS  Google Scholar 

  78. 78.

    Li W, Zhu Y, Guo X, Nakanishi K, Kanamori K, Yang H (2013) Preparation of a hierarchically porous AlPO4 monolith via an epoxide-mediated sol–gel process accompanied by spinodal decomposition. Sci Technol Adv Mater 14:045007(1–8)

    Google Scholar 

  79. 79.

    Hasegawa G, Ishihara Y, Kanamori K, Miyazaki K, Yamada Y, Nakanishi K, Abe T (2011) Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem Mater 23:5208–5216

    CAS  Google Scholar 

  80. 80.

    Zhu Y, Yoneda K, Kanamori K, Takeda K, Kiyomura T, Kurata H, Nakanishi K (2016) Hierarchically porous titanium phosphate monoliths and their crystallization behavior in ethylene glycol. New J Chem 40:4153–4159

    CAS  Google Scholar 

  81. 81.

    Gao D, Zhao B, Liu H, Morisato K, Kanamori K, He Z, Zeng M, Wu H, Chen J, Nakanishi K (2018) Synthesis of a hierarchically porous niobium phosphate monolith by a sol–gel method for fructose dehydration to 5-hydroxymethylfurfural. Catal Sci Technol 8:3675–3685

    CAS  Google Scholar 

  82. 82.

    Kido Y, Nakanishi K, Miyasaka A, Kanamori K (2012) Synthesis of monolithic hierarchically porous iron-based xerogels from iron(III) salts via an epoxide-mediated sol–gel process. Chem Mater 24:2071–2077

    CAS  Google Scholar 

  83. 83.

    Fukumoto S, Nakanishi K, Kanamori K (2015) Direct preparation and conversion of copper hydroxide-based monolithic xerogels with hierarchical pores. New J Chem 39:6771–6777

    CAS  Google Scholar 

  84. 84.

    Kido Y, Nakanishi K, Okumura N, Kanamori K (2013) Hierarchically porous nickel/carbon composite monoliths prepared by sol–gel method from an ionic precursor. Micropor Mesopor Mat 176:64–70

    CAS  Google Scholar 

  85. 85.

    Kido Y, Hasegawa G, Kanamori K, Nakanishi K (2014) Porous chromium-based ceramic monoliths: oxides (Cr2O3), nitrides (CrN), and carbides (Cr3C2). J Mater Chem A 2:745–752

    CAS  Google Scholar 

  86. 86.

    Chen B, Wang X, Zhang S, Wei C, Zhang L (2014) Monolithic ZnO aerogel synthesized through dispersed inorganic sol–gel method using citric acid as template. J Porous Mater 21:1035–1039

    CAS  Google Scholar 

  87. 87.

    Li J, Yang S, Jiao P, Peng Q, Yin W, Yuan Y, Lu H, He X, Li Y (2020) Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon 157:427–436

    CAS  Google Scholar 

  88. 88.

    Lu X, Kanamori K, Nakanishi K (2019) Preparation of zinc oxide with a three–dimensionally interconnected macroporous structure via a sol–gel method accompanied by phase separation. New J Chem 43:11720–11726

    CAS  Google Scholar 

  89. 89.

    Hara Y, Kanamori K, Nakanishi K (2019) Self-assembly of metal–organic frameworks into monolithic materials with highly controlled trimodal pore structures. Angew Chem Int Ed 58:19047–19053

    CAS  Google Scholar 

  90. 90.

    Liu L, Zhang J, Fang H, Chen L, Su C (2016) Metal–organic gel material based on UiO-66-NH2 nanoparticles for improved adsorption and conversion of carbon dioxide. Chem Asian J 8:3939–3948

    Google Scholar 

  91. 91.

    Vilela SMF, Salcedo-Abraira P, Micheron L, Solla EL, Yot PG, Horcajada P (2018) A robust monolithic metal–organic framework with hierarchical porosity. Chem Commun 54:13088–13091

    CAS  Google Scholar 

  92. 92.

    Moitra N, Fukumot S, Reboul J, Sumida K, Zhu Y, Nakanshi K, Fukukawa S, Kitagawa S, Kanamori K (2015) Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths. Chem Comm 51:3511–3514

    CAS  Google Scholar 

  93. 93.

    Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    CAS  Google Scholar 

  94. 94.

    Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15:101–114

    CAS  Google Scholar 

  95. 95.

    ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol–formaldehyde organic and carbon gels. Adv Mater 23:2887–2903

    CAS  Google Scholar 

  96. 96.

    Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717

    CAS  Google Scholar 

  97. 97.

    Wan Y, Shi Y, Zhao D (2008) Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem Mater 20:932–945

    CAS  Google Scholar 

  98. 98.

    Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webley PA, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 23:2641–2643

    Google Scholar 

  99. 99.

    Liang C, Dai S (2009) Dual phase separation for synthesis of bimodal meso-/macroporous carbon monoliths. Chem Mater 21:2115–2124

    CAS  Google Scholar 

  100. 100.

    Mayes RT, Tsouris C, Kiggans J, Mahurin SM, DePaoli DW, Dai S (2010) Hierarchical ordered mesoporous carbon from phloroglucinol–glyoxal and its application in capacitive deionization of brackish water. J Mater Chem 20:8674–8678

    CAS  Google Scholar 

  101. 101.

    Hasegawa G, Shimizu T, Kanamori K, Maeno A, Kaji H, Nakanishi K (2017) Highly flexible hybrid polymer aerogels and xerogels based on resorcinol–formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties. Chem Mater 29:2122–2134

    CAS  Google Scholar 

  102. 102.

    Koczwara C, Rumswinkel S, Hammerschmidt L, Salihovic M, Elsaesser MS, Amenitsch H, Paris O, Hüsing N (2019) Nanofibers versus Nanopores: a comparison of the electrochemical performance of hierarchically ordered porous carbons. ACS Appl Energy Mater 2:5279–5291

    CAS  Google Scholar 

  103. 103.

    Hasegawa G, Kanamori K, Nakanishi K, Hayashi K (2019) Thermogravimetric evolved gas analysis and microscopic elemental mapping of the solid electrolyte interphase on silicon incorporated in free-standing porous carbon electrodes. Langmuir 35:12680–12688

    CAS  Google Scholar 

  104. 104.

    Hasegawa G, Yano T, Akamatsu H, Hayashi K, Nakanishi K (2020) Variation of meso- and macroporous morphologies in resorcinol–formaldehyde (RF) gels tailored via a sol–gel process combined with soft-templating and phase separation. J Sol–Gel Sci Technol https://doi.org/10.1007/s10971-020-05236-9

  105. 105.

    Sai H, Tan KW, Hur K, Smith EA, Hovden R, Jiang Y, Riccio M, Muller DA, Elser V, Estroff LA, Gurner SM, Wiesner U (2013) Hierarchical porous polymer scaffolds from block copolymers. Science 341:530–534

    CAS  Google Scholar 

  106. 106.

    Kubo S, White RJ, Tauer K, Titirici MM (2013) Flexible coral-like carbon nanoarchitectures via a dual block copolymer-latex templating approach. Chem Mater 25:4781–4790

    CAS  Google Scholar 

  107. 107.

    Kubo S, Endo A, Yamazaki S (2018) Coral-like hierarchical carbon nanoarchitectures loaded with Rh- and Co-porphyrins as high-efficiency electrodes: effect of pore morphology on CO oxidation and oxygen reduction performance. J Mater Chem A 6:20044–20055

    CAS  Google Scholar 

  108. 108.

    Kanamori K, Nakanishi K, Hanada T (2006) Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv Mater 18:7632–7642

    Google Scholar 

  109. 109.

    Kanamori K, Hasegawa J, Nakanishi K, Hanada T (2008) Facile synthesis of macroporous crosslinked methacrylate gels by atom transfer radical polymerization. Macromolecules 41:7186–7193

    CAS  Google Scholar 

  110. 110.

    Matyjaszewski K, Spanswick J (2005) Controlled/living radical polymerization. Mater Today 8:26–33

    CAS  Google Scholar 

  111. 111.

    Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Pore formation in poly(divinylbenzene) networks derived from organotellurium-mediated living radical polymerization. Macromolecules 42:1270–1277

    CAS  Google Scholar 

  112. 112.

    Hasegawa G, Kanamori K, Ishizuka N, Nakanishi K (2012) New monolithic capillary columns with well-defined macropores based on poly(styrene-co-divinylbenzene). ACS Appl Mater Interfaces 4:2343–2347

    CAS  Google Scholar 

  113. 113.

    Saba SA, Mousavi MPS, Bühimann P, Hillmyer MA (2015) Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation. J Am Chem Soc 137:8896–8899

    CAS  Google Scholar 

  114. 114.

    Hasegawa G, Kanamori K, Nakanishi K, Yamago S (2011) Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization. Polymer 52:4644–4647

    CAS  Google Scholar 

  115. 115.

    Hasegawa J, Kanamori K, Nakanishi K, Hanada T, Yamago S (2009) Rigid crosslinked polyacrylamide monoliths with well-defined macropores synthesized by living polymerization. Macromol Rapid Commun 30:986–990

    CAS  Google Scholar 

  116. 116.

    Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Fabrication of activated carbons with well-defined macropores derived from sulfonated poly(dinylbenzene) networks. Carbon 48:1757–1766

    CAS  Google Scholar 

  117. 117.

    Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem 68:3498–3501

    CAS  Google Scholar 

  118. 118.

    Nakanishi K, Minakuchi H, Soga N, Tanaka N (1997) Double pore silica gel monolith applied to liquid chromatography. J Sol–Gel Sci Technol 8:547–552

    CAS  Google Scholar 

  119. 119.

    Nakanishi K, Minakuchi H, Soga N, Tanaka N (1997) Structure design of double-pore silica and its application to HPLC. J Sol–Gel Sci Technol 13:163–169

    Google Scholar 

  120. 120.

    Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1997) Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J Chromatogr A 762:135–146

    CAS  Google Scholar 

  121. 121.

    Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1998) Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J Chromatogr A 797:121–131

    CAS  Google Scholar 

  122. 122.

    Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1998) Performance of an octadecylsilylated continuous porous silica column in polypeptide separations. J Chromatogr A 828:83–90

    CAS  Google Scholar 

  123. 123.

    Kobayashi H, Tokuda D, Ichimaru J, Ikegami T, Miyabe K, Tanaka N (2006) Faster axial band dispersion in a monolithic silica column than in a particle-packed column. J Chromatogr A 1109:2–9

    CAS  Google Scholar 

  124. 124.

    Gritti F, Piatkowski W, Guiochon G (2002) Comparison of the adsorption equilibrium of a few low-molecular mass compounds on a monolithic and a packed column in reversed-phase liquid chromatography. J Chromatogr A 978:81–107

    CAS  Google Scholar 

  125. 125.

    Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N (2006) Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains. Anal Chem 78:7632–7642

    CAS  Google Scholar 

  126. 126.

    Zheng M, Lin B, Feng Y (2007) Hybrid organic–inorganic octyl monolithic column for in-tube solid-phase microextraction coupled to capillary high-performance liquid chromatography. J Chromatogr A 1164:48–55

    CAS  Google Scholar 

  127. 127.

    Xu L, Lee HK (2008) Preparation, characterization and analytical application of a hybridorganic–inorganic silica-based monolith. J Chromatogr A 1195:78–84

    CAS  Google Scholar 

  128. 128.

    Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki S, Ohira M (2009) Sol–gel synthesis of macro–mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds. J Chromatogr A 1216:7375–7383

    CAS  Google Scholar 

  129. 129.

    Hasegawa G, Morisato K, Kanamori K, Nakanishi K (2011) New hierarchically porous titania monoliths for chromatographic separation media. J Sep Sci 34:3004–3010

    CAS  Google Scholar 

  130. 130.

    Svec F (2004) Organic polymer monoliths as stationary phases for capillary HPLC. J Sep Sci 27:1419–1430

    CAS  Google Scholar 

  131. 131.

    Chen L, Ou J, Liu Z, Lin H, Wang H, Dong J, Zou H (2015) Fast preparation of a highly efficient organic monolith via photo-initiated thiol-ene click polymerization for capillary liquid chromatography. J Chromatogr A 1394:103–110

    CAS  Google Scholar 

  132. 132.

    Tarutani N, Tokudome Y, Nakanishi K, Takahashi M (2014) Layered double hydroxide composite monoliths with three-dimensional hierarchical channels: structural control and adsorption behavior. RSC Adv 4:16075–16080

    CAS  Google Scholar 

  133. 133.

    Zhu Y, Kanamori K, Brun N, Pélisson CH, Moitra N, Fajula F, Hulea V, Galarneau A, Takeda K, Nakanishi K (2016) Monolithic acidic catalysts for the dehydration of xylose into furfural. Catal Commun 87:112–115

    CAS  Google Scholar 

  134. 134.

    Nakanishi K, Komura H, Takahashi R, Soga N (1994) Phase separation in silica sol–gel system containing poly(ethylene oxide). I. Phase relation and gel morphology. Bull Chem Soc Jpn 67:1372–1335

    Google Scholar 

  135. 135.

    Li K, Xue D (2006) Estimation of electronegativity values of elements in different valence states. J Phys Chem A 110:11332–11337

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuki Nakanishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Hasegawa, G., Kanamori, K. et al. Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. J Sol-Gel Sci Technol 95, 530–550 (2020). https://doi.org/10.1007/s10971-020-05370-4

Download citation

Keywords

  • Hierarchically porous monolith
  • 3-D interconnected macropores
  • Sol–gel process
  • Spinodal decomposition
  • Phase separation