Skip to main content
  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:

Alkaline and rare-earth metals doped transparent conductive tin oxide thin films

Abstract

In this paper, Ba-doped SnO2 (SnO2:Ba), Mg-doped SnO2 (SnO2:Mg) and Ce-doped SnO2 (SnO2:Ce) nanostructured thin films were prepared on the glass substrate via a simple and low-cost nebulizer spray pyrolysis method. The crystal structure and morphology of all the samples were investigated by X-ray diffraction (XRD) and field-emission-scanning electron microscopy (FE-SEM), respectively. XRD results suggest that all the samples are polycrystalline with the tetragonal rutile structure. FE-SEM analysis exhibits a uniform surface morphology with homogenous distribution of grains. The transmittance measurement suggests that SnO2:Ba sample exhibits high transparency above 90% in the visible region. We find that doping causes an increase in the band gap, this behavior is explained by the Burstein–Moss effect. Two emission bands in the ultraviolet and visible regions are observed in the photoluminescence spectra. Hall effect measurement reveals that all the samples are degenerate and exhibit n-type semiconducting nature with carrier concentration in the order of 1018 cm−3. Ba doping induces the lowest resistivity of 0.047 Ω·cm associated with an increase in carrier concentration of 8.38 × 1018 cm−3 and mobility of 15.87 cm2 V−1 s−1. In contrast, the incorporation of Mg and Ce in SnO2 reduces the mobility and conductivity, which may be associated with the grain boundary scattering.

Highlights

  • The Ba, Ce and Mg-doped SnO2 thin films were prepared by spray pyrolysis method.

  • Pyramidal-like and spherical-like nano-crystals were investigated.

  • All samples have a polycrystalline tetragonal rutile structure with nanometric dimensions.

  • The Ba-doped SnO2 sample showed excellent optoelectronic properties.

  • Strong near-ultraviolet emission peak at ~386 nm was observed in photoluminescence spectra.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Duan J, Xiong Q, Feng B, Xu Y, Zhang J, Wang H (2017) Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells. Appl Surf Sci 391:677–683

    CAS  Google Scholar 

  2. Ling B, Sun XW, Zhao JL, Ke C, Tan ST, Chen R, Sun HD, Dong ZL (2010) A SnO2 nanoparticle/nanobelt and Si heterojunction light-emitting diode. J Phy Chem C 114:18390–18395

    CAS  Google Scholar 

  3. Liu J, Dai M, Wang T, Sun P, Liang X, Lu G, Shimanoe K, Yamazoe N (2016) Enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nanoparticles heterostructure composite materials. ACS Appl Mater Interfaces 8:6669–6677

    CAS  Google Scholar 

  4. Nguyen VH, Gottlieb U, Valla A, Muñoz D, Bellet D, Muñoz-Rojas D (2018) Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity: the case of ZnO: Al thin films. Mater Horiz 5:715–726

    CAS  Google Scholar 

  5. Feng X, Ma J, Yang F, Ji F, Zong F, Luan C, Ma H (2008) Highly thermal stable transparent conducting SnO2: Sb epitaxial films prepared on α-Al2O3 (0 0 0 1) by MOCVD. Appl Surf Sci 254:6601–6604

    CAS  Google Scholar 

  6. Mi Y, Odaka H, Iwata S (1999) Electronic structures and optical properties of ZnO, SnO2 and In2O3. Jpn J Appl Phys 38:3453

    CAS  Google Scholar 

  7. Godinho KG, Walsh AA, Watson GW (2009) Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2. J Phys Chem C 113:439–448

    CAS  Google Scholar 

  8. Mun H, Yang H, Park J, Ju C, Char K (2015) High electron mobility in epitaxial SnO2-x in semiconducting regime. APL Mater 3:076107

    Google Scholar 

  9. Akgul FA, Gumus C, Ali OE, Farha AH, Akgul G, Ufuktepe Y, Liu Z (2013) Structural and electronic properties of SnO2. J Alloys Compd 579:50–56

    CAS  Google Scholar 

  10. Almamoun O, Ma S (2017) Effect of Mn doping on the structural, morphological and optical properties of SnO2 nanoparticles prepared by Sol-gel method. Mater Lett 199:172–175

    CAS  Google Scholar 

  11. Huo X, Jiang S, Liu P, Shen M, Qiu S, Li M-Y (2017) Molybdenum and tungsten doped SnO2 transparent conductive thin films with broadband high transmittance between the visible and near-infrared regions. CrystEngComm 19:4413–4423

    CAS  Google Scholar 

  12. Chao J, Zhang D, Xing S, Chen Y, Shen W (2018) Controllable assembly of tin oxide thin films with efficient photoconductive activity. Mater Lett 229:244–247

    CAS  Google Scholar 

  13. Liang Y-C, Lee C-M, Lo Y-J (2017) Reducing gas-sensing performance of Ce-doped SnO2 thin films through a cosputtering method. RSC Adv 7:4724–4734

    CAS  Google Scholar 

  14. Kumar M, Kumar A, Abhyankar A (2015) Occurrence of non-equilibrium orthorhombic SnO2 phase and its effect in preferentially grown SnO2 nanowires for CO detection. RSC Adv 5:35704–35708

    CAS  Google Scholar 

  15. He H, Xie Z, Li Q, Li J, Zhang Q (2017) Novel p-type conductivity in SnO2 thin films by Mg doping. J Alloys Compd 714:258–262

    CAS  Google Scholar 

  16. Bannur MS, Antony A, Maddani KI, Poornesh P, Manjunatha KB, Kulkarni SD, Choudhari KS (2018) Role of Ba in engineering band gap, photoluminescence and nonlinear optical properties of SnO2 nanostructures for photovoltaic and photocatalytic applications. Superlattices Microstruct 122:156–164

    CAS  Google Scholar 

  17. Kumari KP, Thomas B (2018) Synthesis of nano-structured tin oxide thin films with faster response to LPG and ammonia by spray pyrolysis. Mater Res Exp 5:014007

    Google Scholar 

  18. Ahmed A, Siddique MN, Alam U, Ali T, Tripathi P (2019) Improved photocatalytic activity of Sr doped SnO2 nanoparticles: a role of oxygen vacancy. Appl Sur Sci 463:976–985

    CAS  Google Scholar 

  19. Ponja S, Williamson BA, Sathasivam S, Scanlon DO, Parkin IP, Carmalt CJ (2018) Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. J Mater Chem C 6:7257–7266

    CAS  Google Scholar 

  20. Lee S, Wang H, Gopal P, Shin J, Jaim HI, Zhang X, Jeong S-Y, Usanmaz D, Curtarolo S, Fornari M (2017) Systematic band gap tuning of BaSnO3 via chemical substitutions: The role of clustering in mixed-valence perovskites. Chem Mater 29:9378–9385

    CAS  Google Scholar 

  21. Mani R, Vivekanandan K, Subiramaniyam N (2017) Photocatalytic activity of different organic dyes by using pure and Fe doped SnO2 nanopowders catalyst under UV light irradiation. J Mater Sci: Mater Electron 28:13846–13852

    CAS  Google Scholar 

  22. Nachiar RA, Muthukumaran S (2019) Structural, photoluminescence and magnetic properties of Cu-doped SnO2 nanoparticles co-doped with Co. Opt Laser Technol 112:458–466

    CAS  Google Scholar 

  23. Swallow JE, Williamson BA, Whittles TJ, Birkett M, Featherstone TJ, Peng N, Abbott A, Farnworth M, Cheetham KJ, Warren P (2018) Self‐compensation in transparent conducting F‐doped SnO2. Adv Funct Mater 28:1701900

    Google Scholar 

  24. Wang M, Gao Y, Chen Z, Cao C, Zhou J, Dai L, Guo X (2013) Transparent and conductive W-doped SnO2 thin films fabricated by an aqueous solution process. Thin Solid Films 544:419–426

    CAS  Google Scholar 

  25. Dong Q, Yin S, Yoshida M, Wu X, Liu B, Miura A, Takei T, Kumada N, Sato T (2015) Alkaline earth metal doped tin oxide as a novel oxygen storage material. Mater Res Bull 69:116–119

    CAS  Google Scholar 

  26. Aragón FH, Gonzalez I, Coaquira JAH, Hidalgo P, Brito HF, Ardisson JD, Macedo WAA, Morais PC (2015) Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method. J Phys Chem C 119:8711–8717

    Google Scholar 

  27. Aguilar-Martínez J, Rodríguez E, García-Villarreal S, Falcon-Franco L, Hernández M (2015) Effect of Ca, Sr and Ba on the structure, morphology and electrical properties of (Co, Sb)-doped SnO2 varistors. Mater Chem Phys 153:180–186

    Google Scholar 

  28. Vallejos S, Selina S, Annanouch FE, Gracia I, Llobet E, Blackman C (2016) Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism. Sci Rep 6:28464

    Google Scholar 

  29. Muhammed Shafi P, Chandra Bose A (2015) Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv 5:057137

    Google Scholar 

  30. Das A, Gautam SK, Shukla D, Singh F (2017) Correlations of charge neutrality level with electronic structure and pd hybridization. Sci Rep 7:40843

    CAS  Google Scholar 

  31. Papadopoulou E, Varda M, Kouroupis-Agalou K, Androulidaki M, Chikoidze E, Galtier P, Huyberechts G, Aperathitis E (2008) Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition. Thin Solid Films 516:8141–8145

    CAS  Google Scholar 

  32. Mishra RK, Kushwaha A, Sahay PP (2014) Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles. RSC Adv 4:3904–3912

    CAS  Google Scholar 

  33. Mishra RK, Pandey SK, Sahay PP (2013) Influence of In doping on the structural, photo-luminescence and alcohol response characteristics of the SnO2 nanoparticles. Mater Res Bull 48:4196–4205

    CAS  Google Scholar 

  34. Bouras K, Rehspringer J-L, Schmerber G, Rinnert H, Colis S, Ferblantier G, Balestrieri M, Ihiawakrim D, Dinia A, Slaoui A (2014) Optical and structural properties of Nd doped SnO2 powder fabricated by the sol-gel method. J Mater Chem C 2:8235–8243

    CAS  Google Scholar 

  35. Hassanien A, Akl AA, Sáaedi A (2018) Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1-xO nanoparticles prepared by sol-gel technique. CrystEngComm 20:1716–1730

    CAS  Google Scholar 

  36. Andrade AB, Ferreira NS, Valerio ME (2017) Particle size effects on structural and optical properties of BaF2 nanoparticles. RSC Adv 7:26839–26848

    CAS  Google Scholar 

  37. Das S, Kim D-Y, Choi C-M, Hahn Y (2011) Structural evolution of SnO2 nanostructure from core-shell faceted pyramids to nanorods and its gas-sensing properties. J Cryst Growth 314:171–179

    CAS  Google Scholar 

  38. Ahmed AM, Rabia M, Shaban M (2020) The structure and photoelectrochemical activity of Cr-doped PbS thin films grown by chemical bath deposition. RSC Adv 10:14458–14470

    CAS  Google Scholar 

  39. Gupta S, Yadav B, Dwivedi PK, Das B (2013) Microstructural, optical and electrical investigations of Sb-SnO2 thin films deposited by spray pyrolysis. Mater Res Bull 48:3315–3322

    CAS  Google Scholar 

  40. Lin S-S, Tsai Y-S, Bai K-R (2016) Structural and physical properties of tin oxide thin films for optoelectronic applications. Appl Surf Sci 380:203–209

    CAS  Google Scholar 

  41. Xu X, Zhuang J, Wang X (2008) SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J Am Chem Soc 130:12527–12535

    CAS  Google Scholar 

  42. Ahmad N, Khan S (2017) Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J Alloys Compd 720:502–509

    CAS  Google Scholar 

  43. Sadeghzadeh-Attar A, Bafandeh M (2018) The effect of annealing temperature on the structure and optical properties of well-aligned 1D SnO2 nanowires synthesized using template-assisted deposition. CrystEngComm 20:460–469

    CAS  Google Scholar 

  44. Hamberg I, Granqvist CG, Berggren K-F, Sernelius BE, Engström L (1984) Band-gap widening in heavily Sn-doped In2O3. Phys Rev B 30:3240

    CAS  Google Scholar 

  45. Lin Y-Y, Lee H-Y, Ku C-S, Chou L-W, Wu AT (2013) Band gap narrowing in high dopant tin oxide degenerate thin film produced by atmosphere pressure chemical vapor deposition. Appl Phys Lett 102:111912

    Google Scholar 

  46. Lu JG, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye ZZ, Zeng YJ, Zhang YZ, Zhu LP, He HP, Zhao BH (2007) Carrier concentration dependence of band gap shift in n-type ZnO:Al films. J Appl Phys 101:083705

    Google Scholar 

  47. Farag A, Yahia I (2010) Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Opt Commun 283:4310–4317

    CAS  Google Scholar 

  48. Shajira P, Bushiri MJ, Nair BB, Prabhu VG (2014) Energy band structure investigation of blue and green light emitting Mg doped SnO2 nanostructures synthesized by combustion method. J Lumin 145:425–429

    CAS  Google Scholar 

  49. Chen S, Zhao X, Xie H, Liu J, Duan L, Ba X, Zhao J (2012) Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol-gel-dip-coating method. Appl Surf Sci 258:3255–3259

    CAS  Google Scholar 

  50. Ragupathy S, Sathya T (2018) Photocatalytic decolourization of brilliant green by Ni doped SnO2 nanoparticles. J Mater Sci Mater Electron 29:8710–8719

    CAS  Google Scholar 

  51. Luo S, Wan Q, Liu W, Zhang M, Song Z, Lin C, Chu PK (2005) Photoluminescence properties of SnO2 nanowhiskers grown by thermal evaporation. Prog Solid State Chem 33:287–292

    CAS  Google Scholar 

  52. Hu J, Bando Y, Liu Q, Golberg D (2003) Laser‐ablation growth and optical properties of wide and long single‐crystal SnO2 ribbons. Adv Funct Mater 13:493–496

    CAS  Google Scholar 

  53. Hashiguchi M, Sakaguchi I, Hishita S, Ohashi N (2014) Zn and Sb interaction and oxygen defect chemistry in dense SnO2 ceramics co-doped with ZnO and Sb2O5. J Ceram Soc Jpn 122:421–425

    Google Scholar 

  54. Kılıç Ç, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88:095501

    Google Scholar 

  55. Mazumder N, Bharati A, Saha S, Sen D, Chattopadhyay KK (2012) Effect of Mg doping on the electrical properties of SnO2 nanoparticles. Curr Appl Phys 12:975–982

    Google Scholar 

  56. Liu Q, Dai J, Zhang Y, Li H, Li B, Liu Z, Wang W (2016) High electrical conductivity in oxygen deficient BaSnO3 films. J Alloys Compd 655:389–394

    CAS  Google Scholar 

  57. Zhao C, Luo B, Chen C (2017) Photoconductivity of CaH2-reduced BaSnO3 thin films. RSC Adv 7:19492–19496

    CAS  Google Scholar 

  58. Ghodsi FE, Mazloom J (2012) Optical, electrical and morphological properties of p-type Mn-doped SnO2 nanostructured thin films prepared by sol-gel process. Appl Phys A 108:693–700

    CAS  Google Scholar 

  59. Rey G, Ternon C, Modreanu M, Mescot X, Consonni V, Bellet D (2013) Electron scattering mechanisms in fluorine-doped SnO2 thin films. J Appl Phys 114:183713

    Google Scholar 

  60. Mazzolini P, Gondoni P, Russo V, Chrastina D, Casari CS, Li Bassi A (2015) Tuning of electrical and optical properties of highly conducting and transparent Ta-doped TiO2 polycrystalline films. J Phys Chem C 119:6988–6997

    CAS  Google Scholar 

  61. Sommer N, Hüpkes J, Rau U (2016) Field emission at grain boundaries: modeling the conductivity in highly doped polycrystalline semiconductors. Phys Rev Appl 5:024009

    Google Scholar 

  62. Dong L, Zhu G, Xu H, Jiang X, Zhang X, Zhao Y, Yan D, Yuan L, Yu A (2019) Preparation of indium tin oxide (ITO) thin film with (400) preferred orientation by sol-gel spin coating method. J Mater Sci Mater Electron 30:8047–8054

    CAS  Google Scholar 

  63. Sunde TOL, Garskaite E, Otter B, Fossheim HE, Sæterli R, Holmestad R, Einarsrud M-A, Grande T (2012) Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution. J Mater Chem 22:15740–15749

    CAS  Google Scholar 

  64. Asl HZ, Rozati SM (2019) High-quality spray-deposited fluorine-doped tin oxide: effect of film thickness on structural, morphological, electrical, and optical properties. Appl Phys A 125:689

    Google Scholar 

  65. Bissig B, Jäger T, Ding L, Tiwari A, Romanyuk Y (2015) Limits of carrier mobility in Sb-doped SnO2 conducting films deposited by reactive sputtering. APL Mater 3:062802

    Google Scholar 

  66. Rucavado E, Jeangros Q, Urban DF, Holovský J, Remes Z, Duchamp M, Landucci F, Dunin-Borkowski RE, Körner W, Elsässer C, Hessler-Wyser A, Morales-Masis M, Ballif C (2017) Enhancing the optoelectronic properties of amorphous zinc tin oxide by subgap defect passivation: a theoretical and experimental demonstration. Phys Rev B 95:245204

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University Grants Commission of Bangladesh (No. DRE-6-RUET-258-7). Authors are thankful to Dr. Juan Antonio Zapien, Professor, Department of Materials Science and Engineering, and member of Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China for providing samples characterization facilities of scanning electron microscopy, X-ray diffraction and spectroscopy ellipsometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ariful Islam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Mou, J.R., Hossain, M.F. et al. Alkaline and rare-earth metals doped transparent conductive tin oxide thin films. J Sol-Gel Sci Technol 96, 304–313 (2020). https://doi.org/10.1007/s10971-020-05362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05362-4

Keywords

  • Transparent conducting oxide
  • Thin films
  • Oxygen vacancy
  • Band gap
  • Near-ultraviolet emission