Skip to main content
Log in

Study on the enhancement of sol–gel properties by binary compounding technology for dry polishing hard and brittle materials

  • Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The newly developed sol–gel (SG) polishing pad based on the sodium alginate (AGS) binary compound system can be used for dry polishing hard and brittle materials to obtain high-quality surfaces. Based on the flexible SG polishing technology, a suitable biopolymer material is selected, and a binary compounding technology is used to prepare an AGS binary compound gel system, thereby optimizing the water-holding and mechanical properties of the gel. Through dry polishing experiments of a hard and brittle SiC material, the advantages of the SG polishing pad based on the sodium alginate-xanthan gum (AX) binary compound system under dry polishing conditions are obvious. The durability of the SG polishing pad is significantly improved compared with that of the AGS single system, which effectively solves the problem of pollution caused by the polishing waste liquid produced during the wet polishing process. At the same time, a high material removal rate will effectively shorten the processing time of hard and brittle materials, improve production efficiency. These results will lay the foundation for the industrialization of dry polishing with SG polishing pads.

Highlights

  • A gel pad has been developed based on the sodium alginate-xanthan gum compound system.

  • The binary compound gel pad was suitable for dry polishing hard and brittle material.

  • The problem of polishing waste liquid pollution effectively solved by dry polishing.

  • The tool with binary compounding technology greatly improve production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang Y, Guangheng D, Zhao J et al. (2019) Study on key factors influencing the surface generation in rotary ultrasonic grinding for hard and brittle materials. J Manuf Process 38:549–555. https://doi.org/10.1016/j.jmapro.2019.01.046

    Article  Google Scholar 

  2. Guo L, Zhang X, Chen S, Hui J (2019) An experimental study on the precision abrasive machining process of hard and brittle materials with ultraviolet-resin bond diamond abrasive tools. Materials 12:1–11. https://doi.org/10.3390/ma12010125

    Article  CAS  Google Scholar 

  3. Guo B, Zhao Q (2019) Ultra-precision machining of hard and brittle materials with coarse-grained grinding wheels. Springer Tracts Mech Eng 201–236. https://doi.org/10.1007/978-981-13-3335-4_8

  4. Huang S, Lu J, Chen S et al. (2019) Study on the surface quality of marble tiles polished with Sol-Gel derived pads. J Sol-Gel Sci Technol 91:485–495. https://doi.org/10.1007/s10971-019-05041-z

    Article  CAS  Google Scholar 

  5. Hashimoto F, Yamaguchi H, Krajnik P et al. (2016) Abrasive fine-finishing technology. CIRP Ann Manuf Technol 65:597–620. https://doi.org/10.1016/j.cirp.2016.06.003

    Article  Google Scholar 

  6. lu J, li Y, Xu X (2015) The effects of abrasive yielding on the polishing of SiC wafers using a semi-fixed flexible pad. Proc Inst Mech Eng, Part B: J Eng Manuf 229:170–177. https://doi.org/10.1177/0954405414563556

    Article  Google Scholar 

  7. Yuan J, Zhang F, Dai Y et al. (2010) Development research of science and technologies in ultra-precision machining field. Jixie Gongcheng Xuebao/J Mech Eng 46:161–177. https://doi.org/10.3901/JME.2010.15.161

    Article  Google Scholar 

  8. Nakamura H, Yan J, Syoji K, Wakamatsu Y (2003) Development of a polishing disc containing granulated fine abrasives. Key Eng Mater 238–239:257–262. https://doi.org/10.4028/www.scientific.net/kem.238-239.257

    Article  Google Scholar 

  9. Yamamoto Y, Maeda H, Shibutani H et al. (2004) A study on constant-pressure grinding with EPD pellets. Key Eng Mater 257–258:135–138. https://doi.org/10.4028/www.scientific.net/kem.257-258.135

    Article  Google Scholar 

  10. Shimada K, Akagami Y, Fujita T et al. (2002) Characteristics of magnetic compound fluid (MCF) in a rotating rheometer. J Magn Magn Mater 252:235–237. https://doi.org/10.1016/S0304-8853(02)00646-7

    Article  CAS  Google Scholar 

  11. Deng QF, Yuan JL, Lü BH et al. (2012) Influences of semi-fixed abrasive tool characteristics on tool wear and material removal in processing. Nami Jishu yu Jingmi Gongcheng/Nanotechnol Precis Eng 10:89–94

    Google Scholar 

  12. Xu Y, Lu J, Xu X et al. (2018) Study on high efficient sapphire wafer processing by coupling SG-mechanical polishing and GLA-CMP. Int J Mach Tools Manuf 130–131:12–19. https://doi.org/10.1016/j.ijmachtools.2018.03.002

    Article  Google Scholar 

  13. Lu J, Xu Y, Zhang Y, Xu X (2017) The effects of SiO2 coating on diamond abrasives in sol-gel tool for SiC substrate polishing. Diam Relat Mater 76:123–131. https://doi.org/10.1016/j.diamond.2017.05.003

    Article  CAS  Google Scholar 

  14. Xu X, Liu J, Yu Y, Lu J (2013) Fabrication and application of gel-bonded abrasive tools for grinding and polishing tools. Jixie Gongcheng Xuebao/J Mech Eng 49:156–162. https://doi.org/10.3901/JME.2013.19.156

    Article  CAS  Google Scholar 

  15. Park C, Kim H, Lee S, Jeong H (2015) The influence of abrasive size on high-pressure chemical mechanical polishing of sapphire wafer. Int J Precis Eng Manuf - Green Technol 2:157–162. https://doi.org/10.1007/s40684-015-0020-0

    Article  Google Scholar 

  16. Lee H (2017) Environmental impact of concentration of slurry components in thick copper CMP. Int J Precis Eng Manuf - Green Technol 4:13–18. https://doi.org/10.1007/s40684-017-0002-5

    Article  Google Scholar 

  17. Lu J, Xu Y, Zhang D, Xu X (2017) The synthesis of the core/shell structured diamond/akageneite hybrid particles with enhanced polishing performance. Materials 10:673–680. https://doi.org/10.3390/ma10060673

    Article  CAS  Google Scholar 

  18. Lu J, Luo Q, Xu X et al. (2019) Removal mechanism of 4H- and 6H-SiC substrates (0001 and 0001) in mechanical planarization machining. Proc Inst Mech Eng, Part B: J Eng Manuf 233:69–76. https://doi.org/10.1177/0954405417718595

    Article  CAS  Google Scholar 

  19. Xu Y, Lu J, Xu X (2019) Pollution-free approaches for highly efficient sapphire substrate processing by mechanical chemical polishing. Catalysts 9:594. https://doi.org/10.3390/catal9070594

    Article  CAS  Google Scholar 

  20. Gorbanenko O (2017) A dry polishing technique for the petrographic examination of mudrocks. Int J Coal Geol 180:122–126. https://doi.org/10.1016/j.coal.2017.03.013

    Article  CAS  Google Scholar 

  21. Deng H, Takiguchi T, Ueda M et al. (2011) Damage-Free Dry Polishing of 4H-SiC Combined with Atmospheric-Pressure Water Vapor Plasma Oxidation. Jpn J Appl Phys 50:08JG05. https://doi.org/10.1143/JJAP.50.08JG05

    Article  CAS  Google Scholar 

  22. Li Y, Wu Y, Zhou L, Fujimoto M (2014) Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher. Int J Mach Tools Manuf 77:93–102. https://doi.org/10.1016/j.ijmachtools.2013.10.005

    Article  Google Scholar 

  23. Vanin FM, Sobral PJA, Menegalli FC et al. (2005) Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll 19:899–907. https://doi.org/10.1016/j.foodhyd.2004.12.003

    Article  CAS  Google Scholar 

  24. Olivas GI, Barbosa-Cánovas GV (2008) Alginate-calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT - Food Sci Technol 41:359–366. https://doi.org/10.1016/j.lwt.2007.02.015

    Article  CAS  Google Scholar 

  25. Li B, Kennedy JF, Jiang QG, Xie BJ (2006) Quick dissolvable, edible and heatsealable blend films based on konjac glucomannan - Gelatin. Food Res Int 39:544–549. https://doi.org/10.1016/j.foodres.2005.10.015

    Article  CAS  Google Scholar 

  26. Zheng H, Zhang Q, Jiang K et al. (1996) Critical behavior of viscosity for alginate solutions near the gelation threshold induced by cupric ions. J Chem Phys 105:7746–7752. https://doi.org/10.1063/1.472557

    Article  CAS  Google Scholar 

  27. Silva MA, da, Bierhalz ACK, Kieckbusch TG (2009) Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydr Polym 77:736–742. https://doi.org/10.1016/j.carbpol.2009.02.014

    Article  CAS  Google Scholar 

  28. Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2:1089–1096. https://doi.org/10.1021/bm010008g

    Article  CAS  Google Scholar 

  29. Sirviö JA, Kolehmainen A, Liimatainen H et al. (2014) Biocomposite cellulose-alginate films: Promising packaging materials. Food Chem 151:343–351. https://doi.org/10.1016/j.foodchem.2013.11.037

    Article  CAS  Google Scholar 

  30. Rezvanain M, Ahmad N, Mohd Amin MCI, Ng SF (2017) Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromolecules 97:131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079

    Article  CAS  Google Scholar 

  31. Xiao Q, Lim LT, Tong Q (2012) Properties of pullulan-based blend films as affected by alginate content and relative humidity. Carbohydr Polym 87:227–234. https://doi.org/10.1016/j.carbpol.2011.07.040

    Article  CAS  Google Scholar 

  32. Müller CMO, Laurindo JB, Yamashita F (2009) Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydr Polym 77:293–299. https://doi.org/10.1016/j.carbpol.2008.12.030

    Article  CAS  Google Scholar 

  33. Harding SE, Smith IH, Lawson CJ et al. (2011) Studies on macromolecular interactions in ternary mixtures of konjac glucomannan, xanthan gum and sodium alginate. Carbohydr Polym 83:329–338. https://doi.org/10.1016/j.carbpol.2010.06.035

    Article  CAS  Google Scholar 

  34. Kumar M, Dosanjh HS, Singh H (2018) Removal of lead and copper metal ions in single and binary systems using biopolymer modified spinel ferrite. J Environ Chem Eng 6:6194–6206. https://doi.org/10.1016/j.jece.2018.09.054

    Article  CAS  Google Scholar 

  35. Dewangan T, Tiwari A, Bajpai AK (2011) Removal of chromium(VI) ions by adsorption onto binary biopolymeric beads of sodium alginate and carboxymethyl cellulose. J Dispers Sci Technol 32:1075–1082. https://doi.org/10.1080/01932691003659403

    Article  CAS  Google Scholar 

  36. Gopalakannan V, Viswanathan N (2016) One pot synthesis of metal ion anchored alginate-gelatin binary biocomposite for efficient Cr(VI) removal. Int J Biol Macromolecules 83:450–459. https://doi.org/10.1016/j.ijbiomac.2015.10.010

    Article  CAS  Google Scholar 

  37. Kumar A, Rao KM, Han SS (2017) Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym Test 63:214–225. https://doi.org/10.1016/j.polymertesting.2017.08.030

    Article  CAS  Google Scholar 

  38. Jiang S, Yu B, Zhou K et al. (2014) Sol-gel synthesis and enhanced properties of a novel transparent PMMA based organic-inorganic hybrid containing phosphorus, nitrogen and silicon. J Sol-Gel Sci Technol 69:418–428. https://doi.org/10.1007/s10971-013-3236-x

    Article  CAS  Google Scholar 

  39. Zahedi M, Ray AK (2010) Optical absorption in solution processed thin films of calcia-alumina binary compounds. J Sol-Gel Sci Technol 55:317–321. https://doi.org/10.1007/s10971-010-2255-0

    Article  CAS  Google Scholar 

  40. Shivayogimath A, Thomsen JD, Mackenzie DMA et al. (2019) A universal approach for the synthesis of two-dimensional binary compounds. Nat Commun 10:2957. https://doi.org/10.1038/s41467-019-11075-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from Fujian New Century Outstanding Talent Support Program and National Natural Science Foundation of China (Grant Nos. U1805251, 51575197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Lu, J., Lin, Y. et al. Study on the enhancement of sol–gel properties by binary compounding technology for dry polishing hard and brittle materials. J Sol-Gel Sci Technol 96, 314–326 (2020). https://doi.org/10.1007/s10971-020-05339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05339-3

Keywords

Navigation