Skip to main content
Log in

Chitosan coating of BaTiO3@ZnO:Yb heterostructures: synthesis and properties

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, BT@ZnO:Yb heterostructures prepared using the combined sol-gel-hydrothermal methods were coated with chitosan (Qo) to obtain a hybrid heterostructure [BT@ZnO:Yb]-Qo. The structure, particle morphology, luminescence properties, and cytotoxicity of the hybrid heterostructure are discussed. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FT-IR) as well as Raman and photoluminescence spectra, were used for characterisation and monitoring of the heterostructure formation process. The results reveal the formation of the BT@ZnO:Yb heterostructure, and are consistent with the relative intensities and positions of peaks in the XRD spectra of BT and ZnO:Yb, with the average particle size of ~75 nm. Effective Qo coating was achieved and a narrow, well-defined, and high-intensity luminescence signal was detected at ~610 nm for all the analysed samples. In vitro studies suggested that treatment with 1 µg/ml BT@ZnO:Yb 3 mol% induced very low cytotoxicity on HeLa cells.

The morphologie of the [BT@ZnO:Yb]-Qo heterostructures shows that the Nps were uniformly distributed throughout the Qo matrix, with the average particle diameter of ~80 nm with the tennis-ball-like spheres after the incorporation of chitosan. The prepared hybrid heterostructures exhibited a narrow, well-defined, and high-intensity luminescence peak at ~610 nm for all the analysed samples, and low cytotoxicity at 1 μg/ml.

Highlights

  • BaTiO3@ZnO:Yb heterostructures can be obtained by the sol-gel-hydrothermal process.

  • Effective heterostructures based on the coating with Qo, [BT@ZnO:Yb]-Qo, were synthesised with low cytotoxicity.

  • The PL intensity depends on the pH of the dispersion medium.

  • Ytterbium luminescence can be used in diagnostic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tonga GY, Moyano DF, Kim CS, Vincent M (2014) Inorganic nanoparticles for therapeutic delivery: Trials, tribulations and promise. Curr Opin Colloid Interface Sci 19:49–55

    CAS  Google Scholar 

  2. Krishna KS, Li Y, Li S, Kuma SSR (2013) Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Adv Drug Deliv Rev 65:1470–1495

    CAS  Google Scholar 

  3. Gamelin DR (2001) Upconversion processes in transition metal and rare earth metal systems. In: Y. H (ed.) Transition metal and rare earth compounds. Springer, Germany, pp 1–56

    Google Scholar 

  4. Boyde R (2003) Nonlinear optics, 2nd edn. Academic Press, NY, USA

  5. Hasan SB, Lederer F, Rockstuhl C (2014) Nonlinear plasmonic antennas. Mater Today 17:478–485

    CAS  Google Scholar 

  6. Baumner R, Bonacina L, Enderlein J, Extermann J, Fricke-Begemann T, Marowsky G, Wolf JP (2010) Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles. Opt Express 18:23218–23225

    Google Scholar 

  7. Chen WL, Hu PS, Ghazaryan A, Chen SJ, Tsai TH, Dong CY (2012) Quantitative analysis of multiphoton excitation autofluorescence and second harmonic generation imaging for medical diagnosis. Comput Med Imaging Graph 36:519–526

    Google Scholar 

  8. Chin H-A, Mao S, Meng F, Ohemeng KK, Purohit PK, Wagner S, McAlpine MC (2016) A flexible barium strontium titanate photodetector array. Extrem Mech Lett 8:47–54

    Google Scholar 

  9. Staedler D, Magouroux T, Hadji R, Joulaud C, Extermann J, Schwung S, Passemard S, Kasparian C, Clarke G, Gerrmann M, Le Dantec R, Mugnier Y, Rytz D, Ciepielewski D, Galez C, Gerber-Lemaire S, Juillerat-Jeanneret L, Bonacina L, Wolf JP (2012) Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility. ACS Nano 6:2542–2549

    CAS  Google Scholar 

  10. Gu B, Pliss A, Kuzmin AN, Baev A, Ohulchanskyy TY, Damasco JA, Yong KT, Wen S, Prasad PN (2016) In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space. Biomaterials 104:78–86

    CAS  Google Scholar 

  11. Dong N, Yao Y, Jia Y, Chen F, Vanga SK, Bettiol AA, Lu Q (2012) Buried channel waveguides in KTiOPO4 nonlinear crystal fabricated by focused He+ beam writing. Opt Mater 35:184–186

    CAS  Google Scholar 

  12. Fontana MD, Abarkan M, Salvestrini JP (2014) Calculation of the dispersion of the electro-optical and second harmonic coefficients from the refractive index dispersion. Opt Mater 36:764–768

    CAS  Google Scholar 

  13. Ladj R, Magouroux T, Eissa M, Dubled M, Mugnier Y, Dantec RL, Galez C, Valour J-P, Fessi H, Elaissari A (2013) Aminodextran-coated potassium niobate (KNbO3) nanocrystals for second harmonic bio-imaging. Colloid Surf A 439:131–137

    CAS  Google Scholar 

  14. Wang Y, Chen Z, Ye Z, Huang JY (2012) Synthesis and second harmonic generation response of KNbO3 nanoneedles. J Cryst Growth 341:42–45

    CAS  Google Scholar 

  15. Shi X, Ma Z, He C, Wu K (2014) Strong SHG responses predicted in binary metal halide crystal HgI2. Chem Phys Lett 608:219–223

    CAS  Google Scholar 

  16. Yadav TK, Singh AK, Kumar K, Yadav RA (2011) Luminescence and second harmonic generation in Eu3+/Eu2+ embedded B2O3:LiNbO3 non-linear glass–ceramics. Opt Mater 33:1732–1736

    CAS  Google Scholar 

  17. Shohanya BG, Zak AK (2020) Doped ZnO nanostructures with selected elements-structural, morphology and optical properties: a review. Ceram Int 46:5507–5520

    Google Scholar 

  18. Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int 43:907–914

    CAS  Google Scholar 

  19. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Google Scholar 

  20. Giner-Casares JJ, Henriksen-Lacey M, Coronado-Puchau M, Liz-Marzán LM (2016) Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater Today 19:19–28

    CAS  Google Scholar 

  21. Hernandez ME, Rembao JD, Hernandez-Baltazar D, Castillo-Rodriguez RA, Tellez-Lopez VM, Flores-Martinez YM, Orozco-Barrios CE, Rubio HA, Sanchez-Garcia A, Ayala-Davila J, Arango-Rodriguez ML, Pavon L, Mejia-Castillo T, Forgez P, Martinez-Fong D (2014) Safety of the intravenous administration of neurotensin-polyplex nanoparticles in BALB/c mice. Nanomed-Nanotecnol 10:745–754

    CAS  Google Scholar 

  22. Archana D, Singh BK, Dutta J, Dutta PK (2015) Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57

    CAS  Google Scholar 

  23. Meshram JV, Koli VB, Phadatare MR, Pawar SH (2017) Anti-microbial surfaces: An approach for deposition of ZnO nanoparticles on PVA-Gelatin composite film by screen printing technique. Mater Sci Eng C Mater Biol Appl 73:257–266

    CAS  Google Scholar 

  24. Wang X, Chang J, Wu C (2018) Bioactive inorganic/organic nanocomposites for wound healing. Appl Mat Today 11:308–319

    Google Scholar 

  25. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    CAS  Google Scholar 

  26. Bernkop-Schnurch A, Dunnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469

    Google Scholar 

  27. Barria I, Guiza J, Cifuentes F, Zamorano P, Saez JC, Gonzalez J, Vega JL (2018) Trypanosoma cruzi Infection Induces Pannexin-1 Channel Opening in Cardiac Myocytes. Am J Trop Med Hyg 98:105–112

    Google Scholar 

  28. McMurdie H, Morris M, Evans E, Paretzkin B, Wong-Ng W, Hubbard C (1986) Standard X-Ray Diffraction Powder Patterns from The JCPDS Research Associateship. Powder Diffr 1:265–275

    CAS  Google Scholar 

  29. Fuentes S, Zárate RA, Chávez E, Muñoz P, Ayala M, Espinoza-González R, Leyton P (2010) Synthesis and characterization of BaTiO3 nanoparticles in oxygen atmosphere. J Alloy Compd 505:568–572

    CAS  Google Scholar 

  30. Goel S, Kumar B (2020) A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J Alloy Compd 816:152491–152523

    CAS  Google Scholar 

  31. Zhang J, Du J, Han B, Liu Z, Jiang T, Zhang Z (2006) Sonochemical formation of single-crystalline gold nanobelts. Angew Chem 118:1134–1137

    Google Scholar 

  32. Saeed Sel S, El-Moll MM, Hassan ML, Bakir E, Abdel-Mottaleb MM, Abdel-Mottaleb MS (2014) Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Carbohydr Polym 99:817–824

    Google Scholar 

  33. Magesh G, Bhoopathi G, Nithya N, Arun AP, Ranjith Kumar E (2018) Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles. Superlattices Microstruct 117:36–45

    CAS  Google Scholar 

  34. Toiserkani H (2015) Fabrication and characterization chitosan/functionalized zinc oxide bionanocomposites and study of their antibacterial activity. Compos Interfaces 23:175–189

    Google Scholar 

  35. Damen TC, Porto SPS, Tell B (1966) Raman Effect in Zinc Oxide. Phys Rev 142:570–574

    CAS  Google Scholar 

  36. Jaramillo AF, Baez-Cruz R, Montoya LF, Medinam C, Pérez-Tijerina E, Salazar F, Rojas D, Melendrez MF (2017) Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceram Int 43:11838–11847

    CAS  Google Scholar 

  37. Zolfaghari M (2019) Propose for Raman mode position for Mn-doped ZnO nanoparticles. Phys B 555:1–8

    CAS  Google Scholar 

  38. Tenne DA, Xi X (2008) Raman Spectroscopy of Ferroelectric Thin Films and Superlattices. J Am Ceram Soc 91:1820–1834

    CAS  Google Scholar 

  39. Dempsey C, Lee I, Cowan KR, Suh J (2013) Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery. Colloids Surf B 112:108–112

    CAS  Google Scholar 

  40. Gambinossi F, Mylon SE, Ferri JK (2015) Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv Colloid Interface Sci 222:332–349

    CAS  Google Scholar 

  41. Karunakaran C, Vinayagamoorthy P, Jayabharathi J (2014) Optical, electrical, and photocatalytic properties of polyethylene glycol-assisted sol–gel synthesized BaTiO3@ZnO core–shell nanoparticles. Powder Technol 254:480–487

    CAS  Google Scholar 

  42. Seid ET, Dejene FB, Kroon RE (2019) Synthesis, characterization and influence of pH on indium doped zinc oxide nanostructures. Ceram Int 45:24269–24278

    CAS  Google Scholar 

  43. Kanamori T, Han Y, Nagao D, Kamezawa N, Ishii H, Konno M (2016) Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO3 nanoparticles. Mater Sci Eng B 211:173–177

    CAS  Google Scholar 

  44. Cardoso Avila PE, Rangel Mendoza A, Pichardo Molina JL, Flores Villavicencio LL, Castruita Dominguez JP, Chilakapati MK, Sabanero Lopez M (2017) Biological response of HeLa cells to gold nanoparticles coated with organic molecules. Toxicol Vitr 42:114–122

    CAS  Google Scholar 

  45. Khan JA, Pillai B, Das TK, Singh Y, Maiti S (2007) Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem 8:1237–1240

    CAS  Google Scholar 

  46. Lee E, Jeon H, Lee M, Ryu J, Kang C, Kim S, Jung J, Kwon Y (2019) Molecular origin of AuNPs-induced cytotoxicity and mechanistic study. Sci Rep 9:2494–2499

    Google Scholar 

Download references

Acknowledgements

This work has been partially financed by Basal Financing Program CONICYT, AFB180001 (CEDENNA). SF thanks to FONDEQUIP project EQM140044 and Scientific Equipment Unit – MAINI of Universidad Católica del Norte. This work was partially supported by a MINEDUC-UA project code ANT 1755 (to JLV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fuentes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes, S., León, J., Vega, J.L. et al. Chitosan coating of BaTiO3@ZnO:Yb heterostructures: synthesis and properties. J Sol-Gel Sci Technol 95, 465–473 (2020). https://doi.org/10.1007/s10971-020-05329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05329-5

Keywords

Navigation