Skip to main content

Advertisement

Log in

Hydrogen peroxide sol–gel coating of microencapsulated phase change materials by metal oxides

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrogen peroxide assisted sol–gel coating of core-shell microcapsules of phase change materials (PCMs) is reported. A doubly coated paraffin core with an inner poly(melamine-formaldehyde) shell and an outer coating of peroxostannate, peroxoantimonate, their mixture or the respective metal oxides are reported. Triple coating of the paraffin core with a poly(melamine-formaldehyde) inner shell, tin oxide middle layer and graphene oxide outer coating is also achieved by hydrogen peroxide sol–gel processing. The latent heats of the microencapsulated PCMs ranged between 122 and 192 J g−1. The sol–gel process involves stabilization of the peroxostannate or peroxoantimonate sol in basic aqueous hydrogen peroxide and subsequent destabilization and deposition of the sol by addition of an antisolvent. Transformation to the metal oxide coating is conducted by chemical reduction with sodium sulfite or by mild heat treatment without leakage of the paraffin core.

The hydrogen bonding of hydroperoxo capped stannate nanoparticles to poly(melamine formaldehyde) - paraffin microcapsule.

Highlights

  • H2O2 assisted sol–gel coating of phase change organic–inorganic phase change microcapsules.

  • Organic–inorganic, core-shell phase change microcapsules with up to 192 J g−1 latent heat.

  • SnO2 and reduced graphene oxide coating of paraffin - poly(melamine-formaldehyde) microcapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu LK, Su D, Tang YJ, Fang GY (2016) Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 62:305–317

    Article  CAS  Google Scholar 

  2. Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC (2015) Developments in organic solid-liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag 95:193–228

    Article  CAS  Google Scholar 

  3. Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158

    Article  CAS  Google Scholar 

  4. Qureshi ZA, Ali HM, Khushnood S (2018) Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf 127:838–856

    Article  CAS  Google Scholar 

  5. Li BX, Liu TX, Hu LY, Wang YF, Gao LN (2013) Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng 1:374–380

    Article  CAS  Google Scholar 

  6. Jung Y, You JO, Youm KH (2015) Synthesis of monodispersed paraffin microcapsules by polycondensation using membrane emulsification and their latent heat properties. Macromol Res 23:1004–1011

    Article  CAS  Google Scholar 

  7. Cao L, Tang F, Fang GY (2014) Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy Build 72:31–37

    Article  Google Scholar 

  8. Mikhaylov AA, Medvedev AG, Grishanov DA, Sladkevich S, Xu ZJ, Hua YE, Prikhodchenko PV, Lev O (2019) Doubly coated, organic – inorganic paraffin phase change materials: zinc oxide coating of hermetically encapsulated paraffins. Adv Mater Interfaces 6:1900368

    Article  Google Scholar 

  9. Medvedev AG, Mikhaylov AA, Grishanov DA, Yu DYW, Gun J, Sladkevich S, Lev O, Prikhodchenko PV (2017) GeO2 thin film deposition on graphene oxide by the hydrogen peroxide route: evaluation for lithium-ion battery anode. ACS Appl Mater Interfaces 9:9152–9160

    Article  CAS  Google Scholar 

  10. Mikhaylov AA, Medvedev AG, Mason CW, Nagasubramanian A, Madhavi S, Batabyal SK, Zhang Q, Gun J, Prikhodchenko PV, Lev O (2015) Graphene oxide supported sodium stannate lithium ion battery anodes by the peroxide route: low temperature and no waste processing. J Mater Chem A 3:20681–20689

    Article  CAS  Google Scholar 

  11. Mikhaylov AA, Medvedev AG, Tripol’skaya TA, Popov VS, Mokrushin AS, Krut’ko DP, Prikhodchenko PV, Lev O (2017) H2O2 induced formation of graded composition sodium-doped tin dioxide and template-free synthesis of yolk-shell SnO2 particles and their sensing application. Dalton Trans 46:16171–16179

    Article  CAS  Google Scholar 

  12. Grishanov DA, Mikhaylov AA, Medvedev AG, Gun J, Nagasubramanian A, Srinivasan M, Lev O, Prikhodchenko PV (2018) Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na- and Li-ion battery anodes by hydrogen peroxide sol gel processing. J Colloid Interface Sci 512:165–171

    Article  CAS  Google Scholar 

  13. Microtek Laboratories, Inc. https://www.microteklabs.com/

  14. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846

    Article  CAS  Google Scholar 

  15. Schumb WC, Satterfield CN, Wentworth RP (1955) Hydrogen peroxide. Reinhold Publishing Corp, New York, NY

    Google Scholar 

  16. Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent 3330697

  17. Bernardi MIB, Soledade LE, Santos IA, Leite ER, Longo E, Varela JA (2002) Influence of the concentration of Sb2O3 and the viscosity of the precursor solution on the electrical and optical properties of SnO2 thin films produced by the Pechini method. Thin Solid Films 405:228–233

    Article  CAS  Google Scholar 

  18. Bernardi MIB, Feitosa CAC, Paskocimas CA, Longo E, Paiva-Santos CO (2009) Development of metal oxide nanoparticles by soft chemical method. Ceram Int 35:463–466

    Article  CAS  Google Scholar 

  19. Sladkevich S, Kyi N, Gun J, Prikhodchenko P, Ischuk S, Lev O (2011) Antimony doped tin oxide coating of muscovite clays by the Pechini route. Thin Solid Films 520:152–158

    Article  CAS  Google Scholar 

  20. Sladkevich S, Mikhaylov AA, Prikhodchenko PV, Tripol’skaya TA, Lev O (2010) Antimony tin oxide (ATO) nanoparticle formation from H2O2 solutions: a new generic film coating from basic solutions. Inorg Chem 49:9110–9112

    Article  CAS  Google Scholar 

  21. Mikhaylov AA, Medvedev AG, Grishanov DA, Edison E, Madhavi S, Sladkevich S, Gun J, Prikhodchenko PV, Lev O (2020) Green synthesis of a nanocrystalline tin disulfide reduced grapheneoxide anode from ammonium peroxostannate: a highlystable sodium-ion battery anode ACS Sustain Chem Eng 8:5485–5494

    Article  CAS  Google Scholar 

  22. Grishanov DA, Churakov AV, Medvedev AG, Mikhaylov AA, Lev O, Prikhodchenko PV (2019) Crystalline ammonium peroxogermanate as a waste-free, fully recyclable versatile precursor for germanium compounds. Inorg Chem 58:1905–1911

    Article  CAS  Google Scholar 

  23. Medvedev AG, Grishanov DA, Churakov AV, Mikhaylov AA, Lev O, Prikhodchenko PV (2020) Hydroperoxo double hydrogen bonding: stabilization of hydroperoxo complexes exemplified by triphenylsilicon and triphenylgermanium hydroperoxides Cryst Eng Comm 22:1922–1928

    Article  CAS  Google Scholar 

  24. Churakov AV, Sladkevich S, Lev O, Tripol’skaya TA, Prikhodchenko PV (2010) Cesium hydroperoxostannate: first complete structural characterization of a homoleptic hydroperoxocomplex. Inorg Chem 49:4762–4764

    Article  CAS  Google Scholar 

  25. Vener MV, Medvedev AG, Churakov AV, Prikhodchenko PV, Tripol’skaya TA, Lev O (2011) H-bond network in amino acid cocrystals with H2O or H2O2. The DFT study of serine-H2O and serine-H2O2. J Phys Chem A 115:13657–136663

    Article  CAS  Google Scholar 

  26. Churakov AV, Grishanov DA, Medvedev AG, Mikhaylov AA, Tripol’skya TA, Vener MV, Navasardyan MA, Lev O, Prikhodchenko PV (2019) Cyclic dipeptide peroxosolvates: first direct evidence for hydrogen bonding between hydrogen peroxide and a peptide backbone. CrystEngComm 21:4961–4968

    Article  CAS  Google Scholar 

  27. Bénézeth P, Palmer DA, Wesolowski DJ, Xiao C (2002) New measurements of the solubility of zinc oxide from 150 to 350 °C. J Solut Chem 31:947–973

    Article  Google Scholar 

  28. Chernyshov IYU, Vener MV, Prikhodchenko PV, Medvedev AG, Lev O, Churakov AV (2017) Peroxosolvates: formation criteria, H2O2 hydrogen bonding, and isomorphism with the corresponding hydrates. Cryst Growth Des 17:214–220

    Article  CAS  Google Scholar 

  29. Wang D, Sui J, Qi D, Deng S, Wei Y, Wang X, Lan X (2019) Phase transition of docosane in nanopores. J Therm Anal Calorim 135:2869–2877

    Article  CAS  Google Scholar 

  30. Jiang Q, Ward MD (2014) Crystallization under nanoscale confinement. Chem Soc Rev 43:2066–2079

    Article  CAS  Google Scholar 

  31. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  CAS  Google Scholar 

  32. Kashyap S, Kabra S, Kandasubramanian B (2000) Graphene aerogel-based phase changing composites for thermal energy storage systems. J Mater Sci 55:4127–4156

    Article  Google Scholar 

  33. Wu HY, Li ST, Shao YW, Jin XZ, Qi XD, Yang JH, Zhou ZW, Wang Y (2020) Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability. Chem Eng J 379:122373

    Article  CAS  Google Scholar 

  34. Akhiani AR, Mehrali M, Latibari ST, Mehrali M, Mahlia TMI, Sadeghinezhad E, Metselaar HSC (2015) One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. J Phys Chem C 119:22787–22796

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Research Foundation, Prime Minister Office, Singapore under its Campus of Research Excellence and Technological Enterprise (CREATE) programme. The financial support of the Ministry of Science is thankfully acknowledged. The authors thank the Harvey M. Krueger Family Centre for Nanoscience and Nanotechnology of the Hebrew University of Jerusalem and the Israel Science Foundation (grant number 1215/19). We thank the Russian Foundation for Basic Research (grant 18-29-19119, 18-33-20211). The User Facilities Center of IGIC RAS within the State Assignment on Fundamental Research to the Kurnakov Institute of General and Inorganic Chemistry are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petr V. Prikhodchenko or Ovadia Lev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhaylov, A.A., Medvedev, A.G., Grishanov, D.A. et al. Hydrogen peroxide sol–gel coating of microencapsulated phase change materials by metal oxides. J Sol-Gel Sci Technol 95, 649–660 (2020). https://doi.org/10.1007/s10971-020-05327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05327-7

Keywords

Navigation