Skip to main content

Advertisement

Log in

Effect of temperature and reaction time during solvothermal synthesis of BiOCl on microspheres formation: implications in the photocatalytic oxidation of gallic acid under simulated solar radiation

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Synthesis and characterization of bismuth oxychloride (BiOCl) has received much attention due to its excellent photocatalytic properties, and low toxicity that allow its potential application for environmental decontamination processes. In this work, experimental conditions (temperature and reaction time) were established to synthesize BiOCl microspheres by a solvothermal method with high photocatalytic efficiency on the degradation of 3,4,5-trihydroxybenzoic acid (gallic acid). BiOCl materials were synthesized according to a design of experiment (DoE) where temperature and reaction time were selected as varying parameters. Obtained BiOCl materials with the highest and lowest degradation toward gallic acid, were characterized using several techniques. Results showed that the applied temperature is the most important parameter during solvothermal synthesis, which influences not only morphology and structure of BiOCl, but also its thermal stability and optical properties. Response surface methodology (RSM) analysis indicated that the highest photocatalytic efficiency of synthesized BiOCl material, is obtained when the temperature and reaction time are fixed at 155 °C and 18 h, respectively. Finally, a reaction mechanism of photocatalytic oxidation of gallic acid was proposed based on an experimental tests by adding different radical’ scavengers.

Highlights

  • Determination of standard conditions (temperature and reaction time) for the synthesis of BiOCl microspheres by a solvothermal method.

  • Optimal synthesis conditions were obtained at a temperature of 155 °C and 18 h of reaction time.

  • BiOCl properties and photocatalytic efficiency depended on the synthesis temperature of the BiOCl materials.

  • Photocatalytic degradation of gallic acid using BiOCl, proceed via oxidation with h+ and •\(O_2^ -\) radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li C, Qiang Z, Wenhua L, Shuangfeng Y (2010) Synthesis and characterization of bispyrrolidine derivatives of H2@C60: differentiation of isomers using 1H NMR spectroscopy of endohedral H2. Prog Chem 22:2282–2289

    CAS  Google Scholar 

  2. Suzuki H (2001) In: Hitomi Suzuki YM (ed), Elemental bismuth, in Organobismuth Chemistry, Amsterdam

  3. Sun H, Zhou J, Qiu J (2014) Recent advances in bismuth activated photonic materials. Prog Mater Sci 64:1–72

    Article  CAS  Google Scholar 

  4. Slikkerveer A, Wolff F (1989) Pharmacokinetics and toxicity of bismuth compounds. Med Toxicol Advers Drug Exp 4:303–323

    Article  CAS  Google Scholar 

  5. He R, Cao S, Zhou P, Yu J (2014) Recent advances in visible light Bi-based photocatalysts. Chin J Catal 35:989–1007

    Article  CAS  Google Scholar 

  6. Wang K, Shao C, Li X, Miao F, Lu N, Liu Y (2016) Facile sol–gel synthesis of Nd, Ce-codoped TiO2 nanoparticle using starch as a green modifier: structural, optical and photocatalytic behaviors. J Sol-Gel Sci Tech 80:793–792

    Article  CAS  Google Scholar 

  7. Kijima N, Matano K, Saito M, Oikawa T, Konishi T, Yasuda H, Sato T, Yoshimura Y (2001) Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst. Appl Catal A 206:237–244

    Article  CAS  Google Scholar 

  8. Zhang K, Liu C, Huang F, Zheng C, Wang W (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B 68:125–129

    Article  CAS  Google Scholar 

  9. Zhang X, Jia F, Zhang L (2008) Phys Chem 112:747–753

    CAS  Google Scholar 

  10. Xiong J, Cheng G, Qin F, Wang R, Sun H, Chen R (2013) Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem Eng J 220:228–236

    Article  CAS  Google Scholar 

  11. Liu J, Hu J, Ruan L, Wu Y (2014) Facile and environment friendly synthesis of hierarchical BiOCl flowery microspheres with remarkable photocatalytic properties. Chin Sci Bull 59:802–809

    Article  CAS  Google Scholar 

  12. Wei Pingyu YQ, Guo Lin (2009) Prog Chem 21:1734–1741

    Google Scholar 

  13. Chen F, Liu H, Bagwasi S, Shen X, Zhang J (2010) Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation. J Photoch Photobio A 215:76–80

    Article  CAS  Google Scholar 

  14. Xiong J, Cheng G, Qin F, Wang R, Sun H, Chen R (2013) Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem Eng J 220:228–236

    Article  CAS  Google Scholar 

  15. Pare B, Sarwan B, Jonnalagadda S (2012) The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst. J Mol Struct 1007:196–202

    Article  CAS  Google Scholar 

  16. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–2026

    Article  CAS  Google Scholar 

  17. An H, Du Y, Wang T, Wang C, Hao W, Zhang J (2008) Photocatalytic properties of BiOX (X = Cl, Br, and I Rare Metals 27:243–250

    Article  CAS  Google Scholar 

  18. Li J, Yu Y, Zhang L (2014) Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale 6:8473–8488

    Article  CAS  Google Scholar 

  19. Henle J, Simon P, Frenzel A, Scholz S, Kaskel S (2007) Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions. Chem Mater 19:366–373

    Article  CAS  Google Scholar 

  20. Peng H, Chan C, Meister S, Feng X, Cui Y (2009) Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem Mater 21:247–252

    Article  CAS  Google Scholar 

  21. Xiong J, Cheng G, Li G, Qin F, Chen R (2011) Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv 1:1542–1553

    Article  CAS  Google Scholar 

  22. Wu S, Wang C, Cui Y, Wang T, Huang B, Zhang X, Qin X, Brault P (2010) Synthesis and photocatalytic properties of BiOCl nanowire arrays. Mater Lett 64:115–118

    Article  CAS  Google Scholar 

  23. Wang D, Gao G, Zhang Y, Zhou L, Xu A, Chen A (2012) Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 4:7780–7785

    Article  CAS  Google Scholar 

  24. López F, Martínez G, Martínez J, Ruiz F (2010) Synthesis and characterization of nanostructured powders of Bi2O3, BiOCl and Bi. Mater Lett 64:1555–1558

    Article  CAS  Google Scholar 

  25. Chen L, Yin S, Huang R, Zhou Y, Luo S, Au C (2012) Facile synthesis of BiOCl nano-flowers of narrow band gap and their visible-light-induced photocatalytic property. Catal Commun 23:54–57

    Article  CAS  Google Scholar 

  26. Ma J, Liu X, Lian J, Duan X, Zheng W (2010) Lonothermal synthesis of BiOCl nanostructures via a long-chain ionic liquid precursor route. Cryst Growth Des 10:2522–2527

    Article  CAS  Google Scholar 

  27. Geng J, Hou W, Lv Y, Zhu J (2005) One-dimensional BiPO4 nanorods and two-dimensional BiOCl lamellae: fast low-temperature sonochemical synthesis,characterization, and growth mechanism. Inorg Chem 44:8503–8509

    Article  CAS  Google Scholar 

  28. Lei Y, Wang G, Song S, Fan W, Zhang H (2009) Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. Cryst Eng Comm 11:1857–1862

    Article  CAS  Google Scholar 

  29. He J, Wang J, Liu Y, Mirza Z, Zhao C, Xiao W (2015) Microwave-assisted synthesis of BiOCl and its adsorption and photocatalytic activity. Ceram Int 41:8028–8033

    Article  CAS  Google Scholar 

  30. Dash A, Sarkar S, Adusumalli V, Mahalingam V (2014) Microwave synthesis, photoluminescence, and photocatalytic activity of PVA-functionalized Eu3+-doped BiOX (X = Cl, Br, I) nanoflakes. Langmuir 11:1401–1409

    Article  CAS  Google Scholar 

  31. Zhang L, Liu H, Lv S, Niu Q (2017) Synthesis and photocatalysis of flaky flower TiO2 with sphere structure. J Sol-Gel Sci Tech 84:283–289

    Article  CAS  Google Scholar 

  32. Wu D, Han L (2019) Solvothermal synthesis and characterization of visible-light-active MoO3/MoS2 heterostructure. J Sol-Gel Sci Tech 91:441–445

    Article  CAS  Google Scholar 

  33. Li J, Zhu Y, Yan Y, Xi B, Tang K, Qian Y (2012) Solvothermal synthesis of 3D BiOCl microstructures and their electrochemical hydrogen storage behavior. J Nanosci Nanotechnol 12:2068–2075

    Article  CAS  Google Scholar 

  34. Li T, Lin L, Wei H, Liang G, Kuang X, Liu T (2016) Solvothermal synthesis of three-dimensional microspherical bismuth oxychloride self-assembled by microspheres. Phys E 76:198–202

    Article  CAS  Google Scholar 

  35. Šumić Z, Vakula A, Tepić A, Čakarević J, Vitas J, Pavlić B (2016) Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem 203:465–475

    Article  CAS  Google Scholar 

  36. Contreras D, Freer J, Rodríguez J (2006) Veratryl alcohol degradation by a catechol-driven Fenton reaction as lignin oxidation by brown-rot fungi model. Inter Biodeter Biodegr 57:63–68

    Article  CAS  Google Scholar 

  37. Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström A, Pettersen J, Bergman R (1998) Experimental design and optimization. Chemometrics Intell Lab Syst 42:3–40

    Article  CAS  Google Scholar 

  38. Mera AC, Moreno Y, Contreras D, Escalona N, Meléndrez MF, Mangalaraja RV, Mansilla HD (2017) Improvement of the BiOI photocatalytic activity optimizing the solvothermal synthesis. Solid State Sci 63:84–92

    Article  CAS  Google Scholar 

  39. Mera A, Rodríguez C, Meléndrez M, Valdés H (2017) Synthesis and characterization of BiOI microspheres under standardized conditions. J Mater Sci 52:944–954

    Article  CAS  Google Scholar 

  40. Mera A, Contreras D, Escalona N, Mansilla H (2016) BiOI microspheres for photocatalytic degradation of gallic acid. J Photochem Photobiol A 318:71–76

    Article  CAS  Google Scholar 

  41. Mera A, Moreno Y, Pivan J, Peña O, Mansilla H (2014) Solvothermal synthesis of BiOI microspheres: effect of the reaction time on the morphology and photocatalytic activity. J Photochem Photobiol A Chem 289:7–13

    Article  CAS  Google Scholar 

  42. Mera A, Jammett F, Valdés H, Meléndrez M (2017) BiOBr microspheres for photocatalytic degradation of an anionic dye. Solid State Sci 65:15–21

    Article  CAS  Google Scholar 

  43. Zheng H, Wei A, Xiong H (2018) Presence of Torque teno sus virus 1 and 2 in porcine circovirus 3-positive pigs. Chalcogenide Lett 15:327–337

    CAS  Google Scholar 

  44. Antil K, Contreras D, Yáñez J, Cornejo L, Santander P, Mansilla H (2017) Solar light driven oxidation of gentisic acid on ZnO. Sol Energy 142:26–32

    Article  CAS  Google Scholar 

  45. Mohammed A, Sebek M, Kreyenschulte C, Lund H, Rabeah J, Langer P, Strunk J, Steinfeldt N (2019) Effect of metal ion addition on structural characteristics and photocatalytic activity of ordered mesoporous titania. J Sol-Gel- Sci Tech 91:539–551

    Article  CAS  Google Scholar 

  46. Yáñez E, Santander P, Contreras D, Yáñez J, Cornejo L, Mansilla H (2016) Homogeneous and heterogeneous degradation of caffeic acid using photocatalysis driven by UVA and solar light. J Environt Sci Heal A 51:78–85

    Article  CAS  Google Scholar 

  47. de la Cruz D, Torres G, Arévalo J, Gómez R, Aguilar A (2010) Synthesis and characterization of TiO2 doping with rare earths by sol–gel method: photocatalytic activity for phenol degradation. J Sol-Gel Sci Tech 56:219–226

    Article  CAS  Google Scholar 

  48. Ozturk B, Pozan G (2017) Preparation of surfactant-modified ZnTiO3–TiO2 nanostructures and their photocatalytic properties under sunlight irradiation. J Sol-Gel Sci Tech 81:226–235

    Article  CAS  Google Scholar 

  49. El-Salamony R, Goubara H, Younis S, Moustafa Y (2017) Zn+2-doped x-Ti–SiO2 tricomposites for enhancement the photo-catalytic degradation of phenol under UV irradiation. J Sol-Gel Sci Tech 83:422–435

    Article  CAS  Google Scholar 

  50. Wahba M, Badawy A (2017) J. Sol-Gel Sc. Tech. https://doi.org/10.1007/s10971-019-05190-1

    Article  CAS  Google Scholar 

  51. Smilgies D (2009) Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J Appl Crystallogr 42:1030–1034

    Article  CAS  Google Scholar 

  52. Tóth J (1990) Calculation of the specific surface area using a model for multilayer adsorption on heterogeneous solid/gas interfaces. Colloids Surf 49:57–69

    Article  Google Scholar 

  53. Iyyapushpam S, Thangaraj N, Padiyan P (2013) Photocatalytic degradation of methyl orange using α-Bi2O3 prepared without surfactant. J Alloy Compd 563:104–107

    Article  CAS  Google Scholar 

  54. Gao X, Zhang X, Wang Y, Peng S, Yue B, Fan C (2015) Rapid synthesis of hierarchical BiOCl microspheres for efficient photocatalytic degradation of carbamazepine under simulated solar irradiation. Chem Eng J 263:419–426

    Article  CAS  Google Scholar 

  55. Ding L, Wei R, Chen H, Hu J, Li J (2015) Appl Catal B 172–173:91–99

    Google Scholar 

  56. Xiao X, Hu R, Liu C, Xing C, Zuo X, Nan J, Wang L (2013) Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride. Chem Eng J 225:790–797

    Article  CAS  Google Scholar 

  57. Xiao P, Zhu L, Zhu Y, Qian Y (2011) Selective hydrothermal synthesis of BiOBr microflowers and Bi2O3 shuttles with concave surfaces. J Solid State Chem 184:1459–1464

    Article  CAS  Google Scholar 

  58. Song J, Mao C, Niu H, Shen Y, Zhang S (2010) Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties. Cryst Eng Comm 12:3875–3881

    Article  CAS  Google Scholar 

  59. Wang DH, Gao GQ, Zhang YW, Zhou LS, Xu AW, Chen W (2012) Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 4:7780–7785

    Article  CAS  Google Scholar 

  60. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Stat Solidi B 15:627–637

    Article  CAS  Google Scholar 

  61. Wood D, Tauc J (1972) Weak absorption tails in amorphous semiconductors. Phys Rev B 5:3144–3151

    Article  Google Scholar 

  62. Luo J, Zhou X, Ma L, Xu X (2015) Enhanced visible-light-driven photocatalytic activity of WO3/BiOI heterojunction photocatalysts. J Mol Catal A 410:168–176

    Article  CAS  Google Scholar 

  63. Li K, Liang Y, Yang J, Gao Q, Zhu Y, Liu S, Xu R, Wu X (2017) Controllable synthesis of {001} facet dependent foursquare BiOCl nanosheets: A high efficiency photocatalyst for degradation of methyl orange. J Alloy Compd 695:238–249

    Article  CAS  Google Scholar 

  64. Guang L, Hui W, Xuejun Z (2016) Effect of drying temperatures on structural performance and photocatalytic activity of BiOCl synthesized by a soft chemical method. J Solid State Chem 239:259–264

    Article  CAS  Google Scholar 

  65. Baneto M, Enesca A, Mihoreanu C, Lare Y, Jondo K, Napo K, Duta A (2015) Effects of the growth temperature on the properties of spray deposited CuInS2 thin films for photovoltaic applications. Ceram Int 41:4742–4749

    Article  CAS  Google Scholar 

  66. Guan Y, Qian H, Guo J, Yang S, Wang X, Wang S (2015) Synthesis of acidified palygorskite/BiOI with exceptional performances of adsorption and visible-light photoactivity for efficient treatment of aniline wastewater. Appl Clay Sci 114:124–132

    Article  CAS  Google Scholar 

  67. Wang Y, He Y, Li T, Cai J, Luo M, Zhao L (2012) Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light. Chem Eng J 189–190:473–481

    Article  CAS  Google Scholar 

  68. Gao X, Zhang X, Wang Y, Peng S, Yue B, Fan C (2015) Rapid synthesis of hierarchical BiOCl microspheres for efficient photocatalytic degradation of carbamazepine under simulated solar irradiation. Chem Eng J 263:419–426

    Article  CAS  Google Scholar 

  69. Mao X, Li X, Wang Y, Fan C, Zhang H (2014) KI/H2O2 assisted synthesis and the changed properties of BiOCl photocatalysts. Chem Eng J 247:241–249

    Article  CAS  Google Scholar 

  70. Zhong X, Zhang K, Wu D, Ye X, Huang W, Zhou B (2020) Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chem Eng J 383:123148

    Article  CAS  Google Scholar 

  71. Hazime R, Ferronato C, Fine L, Salvado A, Jaber F, Chovelon J (2012) Photocatalytic degradation of imazalil in an aqueous suspension of TiO2 and influence of alcohols on the degradation. Appl Catal B 126:90–99

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support given by CONICYT through the project FONDECYT Initiation No 11170431. This work was also funded by projects DIDULS PR17511 No 1020102020910 and prototype PMI 1401_PROT_02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana C. Mera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mera, A.C., Rodríguez, C.A., Pizarro-Castillo, L. et al. Effect of temperature and reaction time during solvothermal synthesis of BiOCl on microspheres formation: implications in the photocatalytic oxidation of gallic acid under simulated solar radiation. J Sol-Gel Sci Technol 95, 146–156 (2020). https://doi.org/10.1007/s10971-020-05312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05312-0

Keywords

Navigation