Skip to main content

Advertisement

Log in

Structural, morphological and Raman scattering studies of pure and Ce-doped ZnO nanostructures elaborated by hydrothermal route using nonorganic precursor

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study concerns the synthesis as well as structural and morphological characterizations of pure and Ce-doped ZnO nanorods synthesized by hydrothermal process. The synthesized nanorods were characterized in terms of their morphological, structural, compositional, and vibrational properties. XRD results indicated the pure wurtzite structure with good crystalline quality of the samples. The use of NaOH as caustic base favors the agglomeration of the rods to form flower-like nanostructures. EDAX measurements show Zn rich materials. FTIR measurements confirm that the synthesized nanorods are high purity. The Raman spectroscopy studies showed that Ce ions shift the vibrational modes toward lower frequencies. The peak related to E2 (high) mode in pure ZnO (NaOH) is relatively intense compared with that of pure ZnO (KOH) and the opposite result is observed in Ce-doped ZnO. After the introduction of Ce atoms, the Raman peaks shifted and asymmetrically broadened due to anharmonic effects originating from quantum-phonon-effect confinement.

Highlights

  • Pure and Ce-doped ZnO nanorods were synthesized by hydrothermal process using zinc sulfate and, respectively, NaOH and KOH as caustic bases.

  • ZnO nanorods possess pure wurtzite structure with good crystalline quality.

  • NaOH caustic base favors the agglomeration of the rods to form flower-like nanostructures.

  • EDAX measurements show Zn rich materials with high oxygen vacancy concentration.

  • Raman spectroscopy studies showed that Ce ions shift the vibrational modes towards lower frequencies.

  • Ce atoms shift Raman peaks asymmetrically due to anharmonic effects originating from quantum-phonon-effect confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov M, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):11

    Article  CAS  Google Scholar 

  2. Das A, Wang D-Y, Leuteritz A, Subramaniam K, Greenwell HC, Wagenknecht U, Heinrich G (2011) Preparation of zinc oxide free, transparent rubber nanocomposites using a layered double hydroxide filler. J Mater Chem 21(20):7194–7200

    Article  CAS  Google Scholar 

  3. Morganti P (2010) Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmet Investig Dermatol 3:5

    Article  CAS  Google Scholar 

  4. Dalrymple OK, Yeh DH, Trotz MA (2007) Removing pharmaceuticals and endocrine‐disrupting compounds from wastewater by photocatalysis. J Chem Technol Biotechnol 82(2):121–134

    Article  CAS  Google Scholar 

  5. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  CAS  Google Scholar 

  6. Chatterjee P, Ghangrekar MM, Rao S (2017) Disinfection of secondary treated sewage using chitosan beads coated with ZnO‐Ag nanoparticles to facilitate reuse of treated water. J Chem Technol Biotechnol 92(9):2334–2341

    Article  CAS  Google Scholar 

  7. Tankhiwale R, Bajpai S (2012) Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf B Biointerfaces 90:16–20

    Article  CAS  Google Scholar 

  8. Becheri A, Dürr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10(4):679–689

    Article  CAS  Google Scholar 

  9. Chang P-C, Fan Z, Wang D, Tseng W-Y, Chiou W-A, Hong J, Lu JG (2004) ZnO nanowires synthesized by vapor trapping CVD method. Chem Mater 16(24):5133–5137

    Article  CAS  Google Scholar 

  10. Zhang D, Yang T, Ma J, Wang Q, Gao R, Ma H (2000) Preparation of transparent conducting ZnO: Al films on polymer substrates by rf magnetron sputtering. Appl Surf Sci 158(1–2):43–48

    Article  CAS  Google Scholar 

  11. He C, Sasaki T, Shimizu Y, Koshizaki N (2008) Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle-like ZnO aggregates. Appl Surf Sci 254(7):2196–2202

    Article  CAS  Google Scholar 

  12. Weintraub B, Deng Y, Wang ZL (2007) Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis. J Phys Chem C 111(28):10162–10165

    Article  CAS  Google Scholar 

  13. Solis-Pomar F, Jaramillo A, Lopez-Villareal J, Medina C, Rojas D, Mera A, Meléndrez M, Pérez-Tijerina E (2016) Rapid synthesis and photocatalytic activity of ZnO nanowires obtained through microwave-assisted thermal decomposition. Ceram Int 42(16):18045–18052

    Article  CAS  Google Scholar 

  14. Khataee A, Karimi A, Arefi-Oskoui S, Soltani RDC, Hanifehpour Y, Soltani B, Joo SW (2015) Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason Sonochem 22:371–381

    Article  CAS  Google Scholar 

  15. Djouadi D, Meddouri M, Chelouche A (2014) Structural and optical characterizations of ZnO aerogel nanopowder synthesized from zinc acetate ethanolic solution. Optical Mater 37:567–571

    Article  CAS  Google Scholar 

  16. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep. 6:27689

    Article  CAS  Google Scholar 

  17. Raj KP, Sadayandi K (2016) Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method. Phys B Condens Matter 487:1–7

    Article  CAS  Google Scholar 

  18. Senthilkumar N, Vivek E, Shankar M, Meena M, Vimalan M, Potheher IV (2018) Synthesis of ZnO nanorods by one step microwave-assisted hydrothermal route for electronic device applications. J Mater Sci: Mater Electron 29(4):2927–2938

    CAS  Google Scholar 

  19. Djouadi D, Aksas A, Chelouche A (2010) Elaboration et Caracterisations structurales et optique de Nanocristallites toriques de ZnO. Ann Chim-Sci Mat 35(5):255–260

    Article  CAS  Google Scholar 

  20. Zhu L, Li Y, Zeng W (2018) Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl Surf Sci 427:281–287

    Article  CAS  Google Scholar 

  21. Abdelouhab ZA, Djouadi D, Chelouche A, Hammiche L, Touam T (2019) Effects of precursors and caustic bases on structural and vibrational properties of ZnO nanostructures elaborated by hydrothermal method. Solid State Sci 89:93–99

    Article  CAS  Google Scholar 

  22. Shi R, Yang P, Dong X, Ma Q, Zhang A (2013) Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis. Appl Surf Sci 264:162–170

    Article  CAS  Google Scholar 

  23. Wahab R, Ansari S, Kim Y-S, Seo H-K, Shin H-S (2007) Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Appl Surf Sci 253(18):7622–7626

    Article  CAS  Google Scholar 

  24. Chen H, Wang R, Zhang J, Hua H, Zhu M (2018) Synthesis of core-shell structured ZnO@m-SiO2 with excellent reinforcing effect and antimicrobial activity for dental resin composites. Dent Mater 34(12):1846–1855. https://doi.org/10.1016/j.dental.2018.10.002

    Article  CAS  Google Scholar 

  25. Alshehri NA, Lewis AR, Pleydell-Pearce C, Maffeis TG (2018) Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. J Saudi Chem Soc 22(5):538–545

    Article  CAS  Google Scholar 

  26. Zhang J, Tan T, Zhao Y, Liu N (2018) Preparation of ZnO Nanorods/Graphene Composite Anodes for High-Performance Lithium-Ion Batteries. Nanomaterials 8 (12). https://doi.org/10.3390/nano8120966

    Article  CAS  Google Scholar 

  27. Li W, Gao S, Li L, Jiao S, Li H, Wang J, Yu Q, Zhang Y, Wang D, Zhao L (2016) Hydrothermal synthesis of a 3D double-sided comb-like ZnO nanostructure and its growth mechanism analysis. Chem Commun 52(53):8231–8234

    Article  CAS  Google Scholar 

  28. Cui Y, Wang F, Iqbal MZ, Wang Z, Li Y, Tu J (2015) Synthesis of novel 3D SnO flower-like hierarchical architectures self-assembled by nano-leaves and its photocatalysis. Mater Res Bull 70:784–788

    Article  CAS  Google Scholar 

  29. Sharma S (2016) ZnO nano-flowers from Carica papaya milk: degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Optik 127(16):6498–6512

    Article  CAS  Google Scholar 

  30. Le CH, Nguyen OT, Nguyen HS, Pham LD, Hoang CV (2017) Controllable synthesis and visible-active photocatalytic properties of Au nanoparticles decorated urchin-like ZnO nanostructures. Curr Appl Phys 17(11):1506–1512

    Article  Google Scholar 

  31. Slimi O, Djouadi D, Hammiche L, Chelouche A, Touam T (2018) Structural and optical properties of Cu doped ZnO aerogels synthesized in supercritical ethanol. J Porous Mater 25(2):595–601

    Article  CAS  Google Scholar 

  32. Meddouri M, Hammiche L, Slimi O, Djouadi D, Chelouche A (2016) Effect of cerium on structural and optical properties of ZnO aerogel synthesized in supercritical methanol. Mater Sci-Pol 34(3):659–664

    Article  CAS  Google Scholar 

  33. John R, Rajakumari R (2012) Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett 4(2):65–72

    Article  CAS  Google Scholar 

  34. Karunakaran C, Gomathisankar P, Manikandan G (2010) Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Mater Chem Phys 123(2–3):585–594

    Article  CAS  Google Scholar 

  35. Xu Z, Hou Q, Guo F, Jia X, Li C, Li W (2018) Effects of strain on the optical and magnetic properties of Ce-doped ZnO. Curr Appl Phys 18(12):1465–1472

    Article  Google Scholar 

  36. Xia C, Hu C, Zhou P (2013) Low-temperature growth and optical properties of Ce-doped ZnO nanorods. J Exp Nanosci 8(1):69–76

    Article  CAS  Google Scholar 

  37. Saad LB, Soltane L, Sediri F (2019) Nano-ZnO sand flowers and rods: hydrothermal synthesis and optical properties. Russian J Phys Chem A 93(11):2269–2274

    Article  Google Scholar 

  38. Mohan AC, Renjanadevi B(2016) Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Technol 24:761–766

    Article  Google Scholar 

  39. Ikono R, Akwalia PR, Siswanto WBW, Sukarto A, Rochman NT (2012) Effect of PH variation on particle size and purity of nano zinc oxide synthesized by sol-gel method. Int J Engl Technol 12:5–9

    Google Scholar 

  40. Baruah S, Dutta J (2009) pH-dependent growth of zinc oxide nanorods. J Cryst Growth 311(8):2549–2554

    Article  CAS  Google Scholar 

  41. Yuan H, Xu M, Huang Q (2014) Effects of pH of the precursor sol on structural and optical properties of Cu-doped ZnO thin films. J Alloy Compd 616:401–407

    Article  CAS  Google Scholar 

  42. Daneshvar N, Aber S, Dorraji MS, Khataee A, Rasoulifard M (2007) Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep Purif Technol 58(1):91–98

    Article  CAS  Google Scholar 

  43. Ashraf R, Riaz S, Hussain SS, Naseem S (2015) Effect of pH on properties of ZnO nanoparticles. Mater Today: Proc 2(10):5754–5759

    Google Scholar 

  44. Wahab R, Ansari S, Kim YS, Song M, Shin H-S (2009) The role of pH variation on the growth of zinc oxide nanostructures. Appl Surf Sci 255(9):4891–4896

    Article  CAS  Google Scholar 

  45. Barrett C, Massalski T (1980) Structure of metals: crystallographic methods. Principles and data (Pergamon Press, Oxford, 1980), pp. 654. ISBN:0080261728

  46. George A, Sharma SK, Chawla S, Malik M, Qureshi M (2011) Detailed of X-ray diffraction and photoluminescence studies of Ce doped ZnO nanocrystals. J Alloy Compd 509(20):5942–5946

    Article  CAS  Google Scholar 

  47. YANG J-h, Ming G, ZHANG Y-j, YANG L-l, LANG J-h, WANG D-d, WANG Y-x, LIU H-l, FAN H-g, WEI M-b (2008) Synthesis and optical properties of Ce-doped ZnO. Chem Res Chin Universities 24(3):266–269

    Article  CAS  Google Scholar 

  48. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Control of ZnO morphology via a simple solution route. Chem Mater 14(10):4172–4177

    Article  CAS  Google Scholar 

  49. Tang W, Wang J (2015) Mechanism for toluene detection of flower-like ZnO sensors prepared by hydrothermal approach: charge transfer. Sens Actuators B Chem 207:66–73

    Article  CAS  Google Scholar 

  50. Do Kim K, Choi DW, Choa Y-H, Kim HT (2007) Optimization of parameters for the synthesis of zinc oxide nanoparticles by Taguchi robust design method. Colloids Surf A Physicochem Eng Asp 311(1–3):170–173

    Article  CAS  Google Scholar 

  51. Anžlovar A, Kogej K, Orel ZC, Žigon M (2014) Impact of inorganic hydroxides on ZnO nanoparticle formation and morphology. Cryst Growth Des 14(9):4262–4269

    Article  CAS  Google Scholar 

  52. Podlogar M, Rečnik A, Yilmazoglu G, Özer IÖ, Mazaj M, Suvaci E, Bernik S (2016) The role of hydrothermal pathways in the evolution of the morphology of ZnO crystals. Ceram Int 42(14):15358–15366

    Article  CAS  Google Scholar 

  53. Wang H, Xie J, Yan K, Duan M (2011) Growth mechanism of different morphologies of ZnO crystals prepared by hydrothermal method. J Mater Sci Technol 27(2):153–158

    Article  Google Scholar 

  54. Yogamalar NR, Bose AC (2011) Tuning the aspect ratio of hydrothermally grown ZnO by choice of precursor. J Solid State Chem 184(1):12–20

    Article  CAS  Google Scholar 

  55. Li W-J, Shi E-W, Zhong W-Z, Yin Z-W (1999) Growth mechanism and growth habit of oxide crystals. J Cryst growth 203(1–2):186–196

    Article  CAS  Google Scholar 

  56. Liang Y, Guo N, Li L, Li R, Ji G, Gan S (2015) Preparation of porous 3D Ce-doped ZnO microflowers with enhanced photocatalytic performance. RSC Adv 5(74):59887–59894

    Article  CAS  Google Scholar 

  57. Rodnyi P, Khodyuk I (2011) Optical and luminescence properties of zinc oxide. Opt Spectrosc 111(5):776–785

    Article  CAS  Google Scholar 

  58. Shukla SK, Agorku ES, Mittal H, Mishra AK (2014) Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors. Chem Pap 68(2):217–222

    Article  CAS  Google Scholar 

  59. Al-Fandi M, Oweis R, Albiss B, AlZoubi T, Al-Akhras M-A, Qutaish H, Khwailah H, Al-Hattami S, Al-Shawwa E A prototype ultraviolet light sensor based on ZnO nanoparticles/graphene oxide nanocomposite using low temperature hydrothermal method. IOP Conference Series: Materials Science and Engineering, 2015. IOP Publishing, p 012009

  60. Manoharan C, Rajendran V, Sivaraj R (2018) Synthesis, characterization and applications of Zno/Tio2/Sio2 nanocomposite. Orient J Chem 34(3):1333–1340

    Article  CAS  Google Scholar 

  61. Vanaja A, Rao KS (2016) Effect of Co doping on structural and optical properties of zinc oxide nanoparticles synthesized by sol-gel method. Adv Nanopart 5(01):83

    Article  CAS  Google Scholar 

  62. Jiang F (2013) Preparation and surface modification ZnO nano-powder with antifriction properties. Asian J Chem 25(13):1062562 (1–18)

    Article  CAS  Google Scholar 

  63. Alim KA, Fonoberov VA, Shamsa M, Balandin AA (2005) Micro-Raman investigation of optical phonons in ZnO nanocrystals. J Appl Phys 97(12):124313

    Article  CAS  Google Scholar 

  64. Samuel M, Koshy J, Chandran A, George K (2010) Optical phonon confinement in ZnO nanorods and nanotubes. Indian J pure & Appl Phys 48:703–708

  65. Ristić M, Musić S, Ivanda M, Popović S (2005) Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J Alloy Compd 397(1–2):L1–L4

    Article  CAS  Google Scholar 

  66. Reddy AJ, Kokila M, Nagabhushana H, Rao J, Shivakumara C, Nagabhushana B, Chakradhar R (2011) EPR, thermo and photoluminescence properties of ZnO nanopowders. Spectrochimica Acta Part A Mol Biomol Spectrosc 81(1):59–63

    Article  CAS  Google Scholar 

  67. Samanta K, Bhattacharya P, Katiyar R, Iwamoto W, Pagliuso P, Rettori C (2006) Raman scattering studies in dilute magnetic semiconductor Zn1−xCoxO. Phys Rev B 73(24):245213

    Article  CAS  Google Scholar 

  68. Sreenivas K, Kumar S, Choudhary J, Gupta V (2005) Growth of zinc oxide nanostructures. Pramana 65(5):809–814

    Article  CAS  Google Scholar 

  69. Tabib A, Bouslama W, Sieber B, Addad A, Elhouichet H, Férid M, Boukherroub R (2017) Structural and optical properties of Na doped ZnO nanocrystals: application to solar photocatalysis. Appl Surf Sci 396:1528–1538

    Article  CAS  Google Scholar 

  70. Xu Q-H, Xu D-M, Guan M-Y, Guo Y, Qi Q, Li G-D (2013) ZnO/Al2O3/CeO2 composite with enhanced gas sensing performance. Sens Actuators B Chem 177:1134–1141

    Article  CAS  Google Scholar 

  71. Chouchene B, Chaabane TB, Balan L, Girot E, Mozet K, Medjahdi G, Schneider R (2016) High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis. Beilstein J Nanotechnol 7(1):1338–1349

    Article  CAS  Google Scholar 

  72. Richter H, Wang Z, Ley L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39(5):625–629

    Article  CAS  Google Scholar 

  73. Faisal M, Ismail AA, Ibrahim AA, Bouzid H, Al-Sayari SA (2013) Highly efficient photocatalyst based on Ce doped ZnO nanorods: controllable synthesis and enhanced photocatalytic activity. Chem Eng J 229:225–233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Djouadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelouhab, Z.A., Djouadi, D., Chelouche, A. et al. Structural, morphological and Raman scattering studies of pure and Ce-doped ZnO nanostructures elaborated by hydrothermal route using nonorganic precursor. J Sol-Gel Sci Technol 95, 136–145 (2020). https://doi.org/10.1007/s10971-020-05293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05293-0

Keywords

Navigation