Skip to main content
Log in

Hydroxyapatite scaffolds containing copper for bone tissue engineering

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The current study involves fabrication and characterization of HA scaffolds containing different copper (Cu) content by ion exchange and 3D extrusion deposition technique. The fabricated pure HA and Cu-doped scaffolds (Cu–HA) were characterized by mechanical behavior, SEM, EDS, XRD, and FT-IR studies. The results show that the Cu-doped HA scaffolds show stronger compressive strength. In addition, the antibacterial properties and biological properties of these scaffolds were investigated in vitro. The antibacterial test results show that the addition of Cu in the HA scaffolds increased antibacterial activity, and the antibacterial properties of scaffolds significantly increased with the addition of Cu. The biocompatibility test results show that the 15Cu–HA scaffolds treated with 15% CuSO4 curing solution significantly inhibited of cell growth on day 7, while the 5Cu–HA scaffolds treated with 5% CuSO4 curing solution the cells observed good grown state on day 7. The 5Cu–HA scaffolds show stronger mechanical behavior, increased antibacterial properties and lower toxicity rat bone marrow mesenchymal stem cells (BMSCs) on day 7. So, the developed 5Cu–HA scaffolds can be used as a good biomaterial for bone tissue engineering.

Highlights

  • Copper was successfully doped into hydroxyapatite (HA) scaffolds using copper sulfate as a cross-linking agent.

  • Cu–HA scaffolds possessed good antibacterial activity and had no toxicity towards rat bone marrow mesenchymal stem cells (BMSCs) at low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vallet-Regí M (2001) Ceramics for medical applications. J Chem Soc, Dalton Trans 2:97–108

  2. Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry 32(1):1–31. https://doi.org/10.1016/j.progsolidstchem.2004.07.001

    Article  CAS  Google Scholar 

  3. Li Y, Ho J, Ooi CP (2010) Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles. Mater Sci Eng C 30(8):1137–1144. https://doi.org/10.1016/j.msec.2010.06.011

    Article  CAS  Google Scholar 

  4. Kim T, Feng QL, Kim J, Wu J, Wang H, Chen G, Cui F (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9(3):129–134

    Article  Google Scholar 

  5. Calasans-Maia M, Rossi AM, Dias EP, Santos SR, Áscoli F, Granjeiro JM Stimulatory effect on osseous repair of zinc-substituted hydroxyapatite: histological study in rabbit’s tibia. In: Key Engineering Materials, 2008. Trans Tech Publ, pp 1269–1272

  6. Wang Q, Tang P, Ge X, Li P, Lv C, Wang M, Wang K, Fang L, Lu X (2018) Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity. Applied Surface Science 462:118–126

    Article  CAS  Google Scholar 

  7. Xu Z-L, Lei Y, Yin W-J, Chen Y-X, Ke Q-F, Guo Y-P, Zhang C-Q (2016) Enhanced antibacterial activity and osteoinductivity of Ag-loaded strontium hydroxyapatite/chitosan porous scaffolds for bone tissue engineering. J Mate Chem B 4(48):7919–7928

    Article  CAS  Google Scholar 

  8. Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y (2017) Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Mater Sci Eng C 72:134–142

    Article  CAS  Google Scholar 

  9. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26(4):235–244. https://doi.org/10.1016/j.mam.2005.07.013

    Article  CAS  Google Scholar 

  10. Hu GF (1998) Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 69(3):326–335

    Article  CAS  Google Scholar 

  11. Rodríguez JP, Rios S, Gonzalez M (2002) Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem 85(1):92–100

    Article  Google Scholar 

  12. Zhang J, Huang J, Xu S, Wang K, Yu S (2003) Effects of Cu2+ and pH on osteoclastic bone resorption in vitro. Prog Nat Sci 13(4):266–270

    CAS  Google Scholar 

  13. Kothapalli CR, Ramamurthi A (2009) Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers. Acta Biomater. 5(2):541–553

    Article  CAS  Google Scholar 

  14. Strause L, Saltman P, Glowacki J (1987) The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats. Calcif Tissue Int 41(3):145–150

    Article  CAS  Google Scholar 

  15. Sakuma S, Atsumi K, Fujita K (1991) Antimicrobial hydroxyapatite powders and methods for preparing them. US Patent 5-009–898

  16. Mehtar S, Wiid I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect 68(1):45–51. https://doi.org/10.1016/j.jhin.2007.10.009

    Article  CAS  Google Scholar 

  17. Stanić V, Dimitrijević S, Antić-Stanković J, Mitrić M, Jokić B, Plećaš IB, Raičević S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256(20):6083–6089

    Article  Google Scholar 

  18. Pogosova MA, Kazin PE, Tretyakov YD (2012) Synthesis and characterisation of copper doped Ca–Li hydroxyapatite. Nucl Instrum Methods Phys Res Sec B Beam Interact Mater Atoms 284:33–35. https://doi.org/10.1016/j.nimb.2011.08.048

    Article  CAS  Google Scholar 

  19. Li J, Li Y, Zuo Y (2006) Preparation and antibacterial properties valuation of copper-substituted nano-hydroxyapatite. J Funct Mater 37(4):635

    CAS  Google Scholar 

  20. Li J, Li Y, Zhang L, Zuo Y (2008) Composition of calcium deficient Na-containing carbonate hydroxyapatite modified with Cu (II) and Zn (II) ions. Appl Surf Sc 254(9):2844–2850

    Article  CAS  Google Scholar 

  21. Chi W, Zou J, Ai F, Lin Y, Li W, Cao C, Yang K, Zhou K (2019) Research of Cu-doped hydroxyapatite microbeads fabricated by pneumatic extrusion printing. Materials 12 (11). https://doi.org/10.3390/ma12111769

    Article  CAS  Google Scholar 

  22. Li T-T, Ling L, Lin M-C, Jiang Q, Lin Q, Lou C-W, Lin J-H (2019) Effects of ultrasonic treatment and current density on the properties of hydroxyapatite coating via electrodeposition and its in vitro biomineralization behavior. Mater Sci Eng C 105:110062. https://doi.org/10.1016/j.msec.2019.110062

    Article  CAS  Google Scholar 

  23. Zhang CJ, Zhang NN, Wang Z, Zhu P (2011) Flame retardant properties of calcium alginate fibers. Dye Finish 8(1):1–5

    Google Scholar 

  24. Zhang J, Tanaka H, Ye F, Jiang D, Iwasa M (2007) Colloidal processing and sintering of hydroxyapatite. Mater Chem Phys 101(1):69–76. https://doi.org/10.1016/j.matchemphys.2006.02.016

    Article  CAS  Google Scholar 

  25. Chi W, Zou J, Ai F, Lin Y, Li W, Cao C, Yang K, Zhou K (2019) Research of Cu-doped hydroxyapatite microbeads fabricated by pneumatic extrusion printing. Materials 12(11):1769

    Article  CAS  Google Scholar 

  26. Misono M, Hall WK (1973) Oxidation-reduction properties of copper-and nickel-substituted hydroxyapatites. J Phys Chem 77(6):791–800

    Article  CAS  Google Scholar 

  27. Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB (2004) Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 25(11):2111–2121. https://doi.org/10.1016/j.biomaterials.2003.09.001

    Article  CAS  Google Scholar 

  28. Sutter B, Ming D, Clearfield A, Hossner L (2003) Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites. Soil Sci Soc Am J 67(6):1935–1942

    Article  CAS  Google Scholar 

  29. Hu W, Ma J, Wang J, Zhang S (2012) Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles. Mater Sci Eng C 32(8):2404–2410. https://doi.org/10.1016/j.msec.2012.07.014

    Article  CAS  Google Scholar 

  30. Imrie F, Skakle J, Gibson I (2013) Preparation of copper-doped hydroxyapatite with varying x in the composition Ca10 (PO4) 6CuxOyHz. Bioceram Dev Appl S 1:2013

  31. Zykin MA, Vasiliev AV, Trusov LA, Dinnebier RE, Jansen M, Kazin PE (2018) Solid state solubility of copper oxides in hydroxyapatite. J Solid State Chemistry 262:38–43

    Article  CAS  Google Scholar 

  32. Baikie T, Ng GM, Madhavi S, Pramana SS, Blake K, Elcombe M, White T (2009) The crystal chemistry of the alkaline-earth apatites A10(PO4)6CuxOy(H)z(A=Ca, Sr and Ba). Dalton Trans 34:6722–6726

  33. Shanmugam S, Gopal B (2014) Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceramics International 40(10, Part A):15655–15662. https://doi.org/10.1016/j.ceramint.2014.07.086

    Article  CAS  Google Scholar 

  34. Joris S, Amberg C (1971) Nature of deficiency in nonstoichiometric hydroxyapatites. II. Spectroscopic studies of calcium and strontium hydroxyapatites. J Phys Chem 75(20):3172–3178

    Article  CAS  Google Scholar 

  35. Yasukawa A, Higashijima M, Kandori K, Ishikawa T (2005) Preparation and characterization of cadmium–calcium hydroxyapatite solid solution particles. Colloids Surf A Physicochem Eng Asp 268(1–3):111–117

    Article  CAS  Google Scholar 

  36. Wang H, Zhao S, Xiao W, Xue J, Shen Y, Zhou J, Huang W, Rahaman MN, Zhang C, Wang D (2016) Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds. Mater Sci Eng C 58:194–203

    Article  CAS  Google Scholar 

  37. Rutkowski P (2012) Catalytic effects of copper (II) chloride and aluminum chloride on the pyrolytic behavior of cellulose. J Anal Appl Pyrolysis 98:86–97

    Article  CAS  Google Scholar 

  38. Fu Q, Rahaman MN, Fu H, Liu X (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res Part A 95(1):164–171

    Article  Google Scholar 

  39. Othmani M, Bachoua H, Ghandour Y, Aissa A, Debbabi M (2018) Synthesis, characterization and catalytic properties of copper-substituted hydroxyapatite nanocrystals. Mater Res Bull 97:560–566. https://doi.org/10.1016/j.materresbull.2017.09.056

    Article  CAS  Google Scholar 

  40. Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77(3):794–802

    Article  CAS  Google Scholar 

  41. Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y (2010) Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling 26(7):851–858. https://doi.org/10.1080/08927014.2010.527000

    Article  CAS  Google Scholar 

  42. Sahithi K, Swetha M, Prabaharan M, Moorthi A, Saranya N, Ramasamy K, Srinivasan N, Partridge N, Selvamurugan N (2010) Synthesis and characterization of nanoscalehydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 6(4):333–339

    Article  CAS  Google Scholar 

  43. Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12(1):167–172

    Article  CAS  Google Scholar 

  44. Li Y, Wang J, Wang Y, Du W, Wang S (2018) Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair. J Biomater Appl 32(6):738–753. https://doi.org/10.1177/0885328217739456

    Article  CAS  Google Scholar 

  45. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98(3):1001–1009. https://doi.org/10.1007/s00253-013-5422-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Laboratory of Lightweight and high strength structural materials of Jiangxi Province (No. 20171BCD40003) and Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment (No. 2019NCZDSY001); China Scholarship Council (No. 201808360279 to KZ); China Postdoctoral Science Foundation (No. 2017M610402 to FA); Postdoctoral Science Foundation of Jiangxi Province (No. 2017KY06 to FA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, F., Chen, L., Yan, J. et al. Hydroxyapatite scaffolds containing copper for bone tissue engineering. J Sol-Gel Sci Technol 95, 168–179 (2020). https://doi.org/10.1007/s10971-020-05285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05285-0

Keywords

Navigation