• Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:

Photoelectrochemical reduction of CO2 over Ru/Mn/Co trimetallic catalysts supported anatase TiO2 under visible light irradiation


Excessive emission of carbon dioxide (CO2) into the environment in addition to depletion of natural fossil fuel leads to the environmental pollution and energy crisis. Therefore, the photelectroreduction of CO2 is a suitable and versatile technique to convert CO2 gas into valuable organic products. Herein, Ru/Mn/Co (1:13:13) supported anatase TiO2 has been prepared using precipitation method and tested for photoelectrochemical reduction of CO2 into formic acid in aqueous and N,N-dimethylformamide (DMF) under visible light. Incorporation of Ru, Mn, and Co successfully reduced the bandgap to 1.66 eV and shifted the light absorption to the visible region with effective suppression of charge carriers recombination which is injurious to the photocatalytic reaction resultant in better photocatalytic performance. The photocurrent density in the aqueous medium is higher than DMF with a value of 12 μA cm−2 vs. Ag/AgCl. Stable photocurrent form chronoamperometry indicative of better product selectivity toward formic acid with Faradaic efficiency in aqueous and DMF are 0.8% and 2.23%, respectively.


  • Addition of Ru, Mn, and Co reduced TiO2 bandgap and shifted light absorption to visible region.

  • Ru/Mn/Co/TiO2 is effective for the separation of photogenerated charge carriers.

  • CO2•− is an important intermediate for the formation of formic acid.

  • Formic acid is the major CO2 reduction product in aqueous and DMF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1:893–899

    CAS  Google Scholar 

  2. 2.

    Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab S, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801

    CAS  Google Scholar 

  3. 3.

    Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502

    CAS  Google Scholar 

  4. 4.

    Gusain R, Kumar P, Sharma OP, Jain SL, Khatri OP (2016) Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl Catal B 181:352–362

    CAS  Google Scholar 

  5. 5.

    Demirbas A (2010) Methane hydrates as potential energy resource: Part 2–Methane production processes from gas hydrates. Energy Convers Manag 51:1562–1571

    CAS  Google Scholar 

  6. 6.

    Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43:7787–7812

    CAS  Google Scholar 

  7. 7.

    Fujishima A, Honda K (1972) TiO2 photoelectrochemistry and photocatalysis. Nature 238:37–38

    Article  CAS  Google Scholar 

  8. 8.

    Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115

    CAS  Google Scholar 

  9. 9.

    Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639

    CAS  Google Scholar 

  10. 10.

    Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 63:515–582

    CAS  Google Scholar 

  11. 11.

    Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochemistry Photobiol C 1:1–21

    CAS  Google Scholar 

  12. 12.

    Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14

    CAS  Google Scholar 

  13. 13.

    Morgan BJ, Watson GW (2010) Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+ U calculations. J Phys Chem C 114:2321–2328

    CAS  Google Scholar 

  14. 14.

    Liu F, Lu L, Xiao P, He H, Qiao L, Zhang Y (2012) Effect of oxygen vacancies on photocatalytic efficiency of TiO2 nanotubes aggregation. Bull Korean Chem Soc 33:2255–2259

    CAS  Google Scholar 

  15. 15.

    Yang C-T, Wood BC, Bhethanabotla VR, Joseph B (2014) CO2 adsorption on anatase TiO2 (101) surfaces in the presence of subnanometer Ag/Pt clusters: implications for CO2 photoreduction. J Phys Chem C 118:26236–26248

    CAS  Google Scholar 

  16. 16.

    Lee J, Sorescu DC, Deng X (2011) Electron-induced dissociation of CO2 on TiO2 (110). J Am Chem Soc 133:10066–10069

    CAS  Google Scholar 

  17. 17.

    Ni M, Leung MK, Leung DY, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    CAS  Google Scholar 

  18. 18.

    Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987–10043

    CAS  Google Scholar 

  19. 19.

    Lee K, Lee S, Cho H, Jeong S, Kim WD, Lee S, Lee DC (2018) Cu+-incorporated TiO2 overlayer on Cu2O nanowire photocathodes for enhanced photoelectrochemical conversion of CO2 to methanol. J Energy Chem 27:264–270

    Google Scholar 

  20. 20.

    Tasbihi M, Kočí K, Edelmannová M, Troppova I, Reli M, Schomaecker R (2018) Pt/TiO2 photocatalysts deposited on commercial support for photocatalytic reduction of CO2. J Photochemistry Photobiol A 366:72–80

    CAS  Google Scholar 

  21. 21.

    Jia P-y, Guo R-t, Pan W-g, Huang C-y, Tang J-y, Liu X-y, Qin H, Xu Q-y (2019) The MoS2/TiO2 heterojunction composites with enhanced activity for CO2 photocatalytic reduction under visible light irradiation. Colloids Surf A 570:306–316

    CAS  Google Scholar 

  22. 22.

    Shariati A (2019) Fe-N-TiO2/CPO-Cu-27 nanocomposite for superior CO2 photoreduction performance under visible light irradiation. Sol Energy 186:166–174

    Google Scholar 

  23. 23.

    Wang L, Jin P, Duan S, She H, Huang J, Wang Q (2019) In-situ incorporation of copper (II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Science 64:926–933

    CAS  Google Scholar 

  24. 24.

    Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M (2018) Improved interfacial bonding of graphene-TiO2 with enhanced photocatalytic reduction of CO2 into solar fuel. J Environ Chem Eng 6:6947–6957

    CAS  Google Scholar 

  25. 25.

    Gui MM, Chai S-P, Xu B-Q, Mohamed AR (2014) Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol Energy Mater Sol Cells 122:183–189

    CAS  Google Scholar 

  26. 26.

    Dong Y, Nie R, Wang J, Yu X, Tu P, Chen J, Jing H (2019) Photoelectrocatalytic CO2 reduction based on metalloporphyrin-modified TiO2 photocathode. Chin J Catal 40:1222–1230

    CAS  Google Scholar 

  27. 27.

    Sápi A, Rajkumar T, Ábel M, Efremova A, Grósz A, Gyuris A, Ábrahámné KB, Szenti I, Kiss J, Varga T (2019) Noble-metal-free and Pt nanoparticles-loaded, mesoporous oxides as efficient catalysts for CO2 hydrogenation and dry reforming with methane. J CO2 Utilization 32:106–118

    Google Scholar 

  28. 28.

    Johánek V, Ostroverkh A, Fiala R (2019) Vapor-feed low temperature direct methanol fuel cell with Pt and PtRu electrodes: Chemistry insight. Renew Energy 138:409–415

    Google Scholar 

  29. 29.

    Pati S, Jangam A, Wang Z, Dewangan N, Wai MH, Kawi S (2019) Catalytic Pd0.77Ag0.23 alloy membrane reactor for high temperature water-gas shift reaction: methane suppression. Chem Eng J 362:116–125

    CAS  Google Scholar 

  30. 30.

    Sen IS, Mitra A, Peucker-Ehrenbrink B, Rothenberg SE, Tripathi SN, Bizimis M (2016) Emerging airborne contaminants in India: Platinum Group Elements from catalytic converters in motor vehicles. Appl Geochem 75:100–106

    CAS  Google Scholar 

  31. 31.

    Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50:3576–3580

    CAS  Google Scholar 

  32. 32.

    Popić J, Avramov-Ivić M, Vuković N (1997) Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3. J Electroanal Chem 421:105–110

    Google Scholar 

  33. 33.

    Bandi A (1990) Electrochemical reduction of carbon dioxide on conductive metallic oxides. J Electrochem Soc 137:2157–2160

    CAS  Google Scholar 

  34. 34.

    Bandi A, Kühne HM (1992) Electrochemical reduction of carbon dioxide in water: analysis of reaction mechanism on ruthenium-titanium-oxide. J Electrochem Soc 139:1605–1610

    CAS  Google Scholar 

  35. 35.

    Spataru N, Tokuhiro K, Terashima C, Rao TN, Fujishima A (2003) Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. J Appl Electrochem 33:1205–1210

    CAS  Google Scholar 

  36. 36.

    Russell WW, Miller GH (1950) Catalytic hydrogenation of carbon dioxide to higher hydrocarbons. J Am Chem Soc 72:2446–2454

    CAS  Google Scholar 

  37. 37.

    Aljabour A, Coskun H, Apaydin DH, Ozel F, Hassel AW, Stadler P, Sariciftci NS, Kus M (2018) Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. Appl Catal B 229:163–170

    CAS  Google Scholar 

  38. 38.

    Gao S, Jiao X, Sun Z, Zhang W, Sun Y, Wang C, Hu Q, Zu X, Yang F, Yang S (2016) Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew Chem Int Ed 55:698–702

    CAS  Google Scholar 

  39. 39.

    Roche I, Scott K (2009) Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution. J Appl Electrochem 39:197–204

    CAS  Google Scholar 

  40. 40.

    Zhang N, Li L, Chu Y, Zheng L, Sun S, Zhang G, He H, Zhao J (2019) High Pt utilization efficiency of electrocatalysts for oxygen reduction reaction in alkaline media. Catal Today 332:101–108

    CAS  Google Scholar 

  41. 41.

    Ju W, Bagger A, Hao G-P, Varela AS, Sinev I, Bon V, Cuenya BR, Kaskel S, Rossmeisl J, Strasser P (2017) Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2, Nature. Communications 8:944

    Google Scholar 

  42. 42.

    Möller T, Ju W, Bagger A, Wang X, Luo F, Thanh TN, Varela AS, Rossmeisl J, Strasser P (2019) Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ Sci 12:640–647

    Google Scholar 

  43. 43.

    Pan F, Deng W, Justiniano C, Li Y (2018) Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl Catal B 226:463–472

    CAS  Google Scholar 

  44. 44.

    Zhang B, Zhang J, Shi J, Tan D, Liu L, Zhang F, Lu C, Su Z, Tan X, Cheng X (2019) Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat Commun 10:1–8

    Google Scholar 

  45. 45.

    Yu L, Zhong Q, Deng Z, Zhang S (2016) Enhanced NOx removal performance of amorphous Ce-Ti catalyst by hydrogen pretreatment. J Mol Catal A 423:371–378

    CAS  Google Scholar 

  46. 46.

    Yu L, Zhong Q, Zhang S (2014) The enhancement for SCR of NO by NH3 over the H2 or CO pretreated Ag/γ-Al2O3 catalyst. Phys Chem Chem Phys 16:12560–12566

    CAS  Google Scholar 

  47. 47.

    Li D, Yu Q, Li SS, Wan HQ, Liu LJ, Qi L, Liu B, Gao F, Dong L, Chen Y (2011) The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy. Chemistry 17:5668–5679

    CAS  Google Scholar 

  48. 48.

    Boronin A, Slavinskaya E, Danilova I, Gulyaev R, Amosov YI, Kuznetsov P, Polukhina I, Koscheev S, Zaikovskii V, Noskov A (2009) Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal Today 144:201–211

    CAS  Google Scholar 

  49. 49.

    Chen D, Qu Z, Lv Y, Lu X, Chen W, Gao X (2015) Effect of oxygen pretreatment on the surface catalytic oxidation of HCHO on Ag/MCM-41 catalysts. J Mol Catal A 404:98–105

    Google Scholar 

  50. 50.

    Nguyen DL, Leroi P, Ledoux MJ, Pham-Huu C (2009) Influence of the oxygen pretreatment on the CO2 reforming of methane on Ni/β-SiC catalyst. Catal Today 141:393–396

    CAS  Google Scholar 

  51. 51.

    Devi LG, Kottam N, Murthy BN, Kumar SG (2010) Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J Mol Catal A 328:44–52

    CAS  Google Scholar 

  52. 52.

    Sharotri N, Sharma D, Sud D (2019) Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants. J Mater Res Technol 8:3995–4009

    CAS  Google Scholar 

  53. 53.

    Sharotri N, Sud D (2017) Visible light responsive Mn-S-co-doped TiO2 photocatalyst—synthesis, characterization and mechanistic aspect of photocatalytic degradation. Sep Purif Technol 183:382–391

    CAS  Google Scholar 

  54. 54.

    Murthy M, Tubaki S, Lokesh S, Rangappa D (2017) Co, N-doped TiO2 coated r-GO as a photo catalyst for enhanced photo catalytic activity. Mater Today 4:11873–11881

    Google Scholar 

  55. 55.

    Wen X-J, Niu C-G, Ruan M, Zhang L, Zeng G-M (2017) AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation. J Colloid Interface Sci 497:368–377

    CAS  Google Scholar 

  56. 56.

    Kong L, Jiang Z, Lai HH, Nicholls RJ, Xiao T, Jones MO, Edwards PP (2012) Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts. J Catal 293:116–125

    CAS  Google Scholar 

  57. 57.

    Chang Y-H, Liu C-M, Chen C, Cheng H-E (2012) The effect of geometric structure on photoluminescence characteristics of 1-D TiO2 nanotubes and 2-D TiO2 films fabricated by atomic layer deposition. J Electrochem Soc 159:D401–D405

    CAS  Google Scholar 

  58. 58.

    Mathew S, kumar Prasad A, Benoy T, Rakesh P, Hari M, Libish T, Radhakrishnan P, Nampoori V, Vallabhan C (2012) UV-visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. J Fluores 22:1563–1569

    CAS  Google Scholar 

  59. 59.

    Nakajima H, Mori T, Watanabe M (2004) Influence of platinum loading on photoluminescence of TiO2 powder. J Appl Phys 96:925–927

    CAS  Google Scholar 

  60. 60.

    Shi J, Chen J, Feng Z, Chen T, Lian Y, Wang X, Li C (2007) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C 111:693–699

    CAS  Google Scholar 

  61. 61.

    Uddin MT, Nicolas Y, Olivier Cl, Toupance T, Müller MM, Kleebe H-J, Rachut K, Ziegler Jr, Klein A, Jaegermann W (2013) Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations. J Phys Chem C 117:22098–22110

    CAS  Google Scholar 

  62. 62.

    Harichandran G, Amalraj SD, Shanmugam P (2014) Synthesis and characterization of phosphate anchored MnO2 catalyzed solvent free synthesis of xanthene laser dyes. J Mol Catal A 392:31–38

    CAS  Google Scholar 

  63. 63.

    Xu J, Gao P, Zhao T (2012) Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ Sci 5:5333–5339

    CAS  Google Scholar 

  64. 64.

    Hasan MR, Hamid SBA, Basirun WJ, Suhaimy SHM, Mat ANC (2015) A sol–gel derived, copper-doped, titanium dioxide–reduced graphene oxide nanocomposite electrode for the photoelectrocatalytic reduction of CO2 to methanol and formic acid. RSC Adv 5:77803–77813

    CAS  Google Scholar 

  65. 65.

    Subrahmanyam M, Kaneco S, Alonso-Vante N (1999) A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1 – C3 selectivity. Appl Catal B 23:169–174

    CAS  Google Scholar 

  66. 66.

    Sasirekha N, Basha SJS, Shanthi K (2006) Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl Catal B 62:169–180

    CAS  Google Scholar 

Download references


The authors would like to thank the University of Malaya for funding this research through grants RP020D-16SUS and FP039-2016.

Author information



Corresponding authors

Correspondence to Ahmad Nazeer Che Mat or Wan Jefrey Basirun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Che Mat, A.N., Jefrey Basirun, W., Asrina Sairi, N. et al. Photoelectrochemical reduction of CO2 over Ru/Mn/Co trimetallic catalysts supported anatase TiO2 under visible light irradiation. J Sol-Gel Sci Technol 94, 279–287 (2020). https://doi.org/10.1007/s10971-020-05277-0

Download citation


  • Ru/Mn/Co photocatalyst
  • Electrophoretic deposition
  • CO2 photoelectrochemical reduction
  • Formic acid
  • Electrolyte medium